www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperSatz von Cayley
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Satz von Cayley
Satz von Cayley < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Cayley: Verständnis
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:21 Mo 28.05.2012
Autor: Big_Head78

Hallo zusammen,

ich versuche mich gerade mit dem Satz von Cayley auseinanderzusetzen und würde mir das gerne mal an einem Bsp. deutlich machen, den Zugang erleichtern. Doch leider gelingt mir das nicht...hat da vielleicht jemand etwas für mich? Gerne auch mehr Bsp..

        
Bezug
Satz von Cayley: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:26 Mo 28.05.2012
Autor: angela.h.b.


> Hallo zusammen,
>  
> ich versuche mich gerade mit dem Satz von Cayley
> auseinanderzusetzen und würde mir das gerne mal an einem
> Bsp. deutlich machen, den Zugang erleichtern. Doch leider
> gelingt mir das nicht...hat da vielleicht jemand etwas für
> mich? Gerne auch mehr Bsp..

Hallo,

es wäre sicher geschickt, wenn Du uns von Deiner Auseinandersetzung mit diesem Satz etwas preisgeben würdest.

Schreib also vor allem mal auf (inkl. Voraussetzungen), wie der Satz lautet,
dann welches Problem Du mit ihm hast, und wie Du Dir versucht hast, Zugang zu verschaffen.

LG Angela






Bezug
                
Bezug
Satz von Cayley: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:12 Mo 28.05.2012
Autor: Big_Head78

Sei (G,*) eine endliche Grp. mit n Elementen. Dann gibt es eine U [mm] \subseteq S_{n}, [/mm] so dass (G,*) isomorph zu (U, [mm] \circ). [/mm]

Habe ich also eine Grp. (G={0,1,2,3}, +)

[mm] \pmat{+& 0&1 & 2&3 \\ 0 &0& 1&2&3 \\ 1&1&2&3&0 \\ 2&2&3&0&1 \\ 3&3&0&1&2 } [/mm]

So und jetzt mal die U: (wobei ich das jetzt nach Gefühl mache und nicht wirklich weiss, dass dies eine Untergrp. ist, also die Forderungen dafür habe ich nicht überprüft)

[mm] \sigma_{0}= \pmat{0& 1 & 2&3 \\ 0&1&2& 3 } [/mm]

[mm] \sigma_{1}= \pmat{0& 1 & 2&3 \\ 1&2&3& 0 } [/mm]

[mm] \sigma_{2}= \pmat{0& 1 & 2&3 \\ 2&3&0& 1 } [/mm]

[mm] \sigma_{3}= \pmat{0& 1 & 2&3 \\ 3&0&1& 2 } [/mm]

U={ [mm] \sigma_{0}, \sigma_{1}, \sigma_{2},\sigma_{3} [/mm] }

Die Abbildung [mm] \phi: [/mm] G [mm] \rightarrow S_{4} [/mm] mit a [mm] \rightarrow \sigma_{a} [/mm] mit a [mm] \in [/mm] G ist bijektiv, jedem a wird genau ein [mm] \sigma_{a} [/mm] zugeordent. Und wenn das jetzt noch ein Grp.homo. ist, dann hat man doch genau das, was der Satz aussagt, oder?

Habe ich das richtig verstanden?


Bezug
                        
Bezug
Satz von Cayley: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 30.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]