Satz von Fubini < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:42 Di 12.09.2006 | Autor: | Reaper |
Hallo...eine allgemeine Frage. Der Satz von Fubini besagt ja im allgemeinen dass man bei einem Doppelintegral unter bestimmten Voraussetzungen die Integrationsreihenfolge vertauschen darf. Nun die Integrationsreihenfolge darf man aber nur vertauschen wenn die Grenzen Konstanten sind.
Wenn diese Funktionen sind muss man doch zuerst überprüfen ob diese stetig, bzw. stetig diffbar sind, erst dann darf man die Integrale vertauschen, oder?
mfg,
Reaper
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:03 Di 12.09.2006 | Autor: | PStefan |
Hi,
Wie du bereits gesagt hast: "Der Satz von Fubini besagt ja im allgemeinen dass man bei einem Doppelintegral unter bestimmten Voraussetzungen die Integrationsreihenfolge vertauschen darf. Nun die Integrationsreihenfolge darf man aber nur vertauschen wenn die Grenzen Konstanten sind. "
Nun zu deiner Frage:
Die Funktion muss stetig auf D sein, also denke ich mir, dass man es schon überprüfen sollte.
Ich hoffe, dass ich dir damit helfen konnte und außerdem muss ich gestehen, dass ich vor diesem Artikel öfters schon den Satz von Fubini gebraucht habe, aber mir nie Gedanken gemacht habe, ob man die Stetigkeit überprüfen sollte.
Gruß
Stefan
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:39 Mi 13.09.2006 | Autor: | Reaper |
Hallo...ich glaub ich hab mich da unglücklich ausgedrückt. Ich meinte dass wenn die Integralgrenzen nicht Konstanten sondern Funktionen sind, dann darf ich ja nicht so ohne weiteres z.b. 2 Doppelintegrale vertauschen....
mfg,
Reaper
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:15 Do 14.09.2006 | Autor: | DirkG |
Deine Frage hat weniger was mit Fubini als mit der Darstellung des Integrationsgebietes [mm]G\subset \mathbb{R}^2[/mm] über geeignete Schnittmengen zu tun:
Sagen wir mal, wir haben ein beschränktes Integrationsgebiet, d.h., es gibt ein Rechteck [mm][a,b]\times [c,d][/mm], wo [mm]G[/mm] reinpasst, also [mm]G\subseteq [a,b]\times [c,d][/mm].
Mit den Schnittmengen
[mm] $$G_Y(x) [/mm] := [mm] \{ y \bigm| (x,y)\in G \},\qquad G_X(y) [/mm] := [mm] \{ x \bigm| (x,y)\in G \}$$
[/mm]
lautet Fubini dann
[mm] $$\iint\limits_G [/mm] ~ f(x,y) ~ [mm] \mathrm{d}(x,y) [/mm] = [mm] \int\limits_{[a,b]} [/mm] ~ [mm] \int\limits_{G_Y(x)} [/mm] ~ f(x,y) ~ [mm] \mathrm{d}y [/mm] ~ [mm] \mathrm{d}x [/mm] = [mm] \int\limits_{[c,d]} [/mm] ~ [mm] \int\limits_{G_X(y)} [/mm] ~ f(x,y) ~ [mm] \mathrm{d}x [/mm] ~ [mm] \mathrm{d}y$$
[/mm]
Dazu bedarf es keines eigenständigen Beweises, man nutzt einfach die Integraldarstellung
[mm] $$\iint\limits_G [/mm] ~ f(x,y) ~ [mm] \mathrm{d}(x,y) [/mm] = [mm] \iint\limits_{\mathbb{R}^2} [/mm] ~ [mm] f(x,y)\cdot 1_G(x,y) [/mm] ~ [mm] \mathrm{d}(x,y)$$
[/mm]
mit der Indikatorfunktion des Gebietes [mm]G[/mm].
|
|
|
|