Satz von de Moivre < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Beweisen Sie: [mm] sin(\bruch{\pi}{3}) [/mm] = [mm] \bruch{\wurzel{3}}{2} [/mm] und [mm] cos(\bruch{\pi}{3}) [/mm] = [mm] \bruch{1}{2} [/mm] . Tipp: Formel von de Moivre mit r = 1, arg = π 3 und n = 3. |
Hallo
ich habe zu der Aufgabe eine Lösung im Buch die lautet:
"Setzen wir s = [mm] sin(\bruch{\pi}{3}) [/mm] und c = [mm] cos(\bruch{\pi}{3}). [/mm] Dann folgt aus der Formel von de Moivre c 3 − 3cs 2 = −1 und 3c 2 s − s 3 = 0."
Das kann ich soweit wenigstens mal nachvollziehen. Wenn ich dann aber nach s bzw. c auflöse, so stoße ich auf [mm] c_1 [/mm] = -1 und [mm] c_2 [/mm] = [mm] \bruch{1}{2}. [/mm] Für s komme ich auf [mm] s_1 [/mm] = 0, [mm] s_2 [/mm] = [mm] \bruch{\wurzel{3}}{2} [/mm] und [mm] s_3 [/mm] = [mm] -\bruch{\wurzel{3}}{2}.
[/mm]
Jetzt kann man natürlich argumentieren, man sieht ja welche Lösung korrekt ist. Ein Blich auf die Graphen von sin und cos und so...
Aber irgendwie ist das dann doch kein richtiger Beweis. Was beweist letztendlich, dass nur [mm] \bruch{1}{2} [/mm] und [mm] \bruch{\wurzel{3}}{2} [/mm] in Frage kommen?
Gruß und danke,
Martin
|
|
|
|
Hallo Martin
Falls ich das richtig verstanden habe, hast du die Gleichung
$\ (c + [mm] i*s)^3 [/mm] = -1$
betrachtet und aufgelöst.
Diese hat eben drei Lösungspaare, die zu den 3 möglichen
Winkeln [mm] \pi [/mm] , [mm] \pi/3 [/mm] und [mm] -\pi/3 [/mm] gehören. Um davon die passende,
also eben die zum Winkel [mm] \pi/3 [/mm] , auszuwählen, liefert der Satz
von Moivre natürlich nicht die Antwort.
Dass [mm] sin(\pi/3) [/mm] und [mm] cos(\pi/3) [/mm] positive Werte sind, darf man
aber doch wohl anderweitig voraussetzen.
LG , Al-Chw.
|
|
|
|