Satzmenge, Modell. < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 10:30 Mi 24.04.2013 | Autor: | Lu- |
Aufgabe | Gib einen (semi)formalen Satz der besagt, dass das Universum mindestens drei Elemente hat. Gib eine unendliche Satzmenge T an die genau die unendliche STruktur als Modelle hat.
Argumentiere ohne Beweis dass es keinen Satz gibt, der genau die endlichen Strukturen als Modell hat
(Bem.: Es gibt nicht einmal eine unendliche Satzmenge mit der Eigenschaft) |
Hallo
Definition:
Ein [mm] \sigma- [/mm] Satz ist eine [mm] \sigma [/mm] - Formel mit [mm] Frei(\phi) [/mm] = [mm] \emptyset.
[/mm]
Für [mm] \sigma [/mm] Sätze
M [mm] \models \phi [/mm] <=> [mm] \hat{\beta} [/mm] ( [mm] \phi) [/mm] 1 für eine/jede Belegung [mm] \beta: [/mm] X(Variablen) -> [mm] \underline{M} [/mm] (Grundmenge)
Damit kann man definieren was es heißt dass eine Struktur M eine Theorie (samtmenge) T erfüllt: M [mm] \models [/mm] T heißt einfach M [mm] \models \phi [/mm] für alle [mm] \phi \in [/mm] T. EIne STruktur M die T erfüllt nennt man T-Modell.
> Gib einen (semi)formalen Satz der besagt, dass das Universum mindestens drei Elemente hat.
Versuch:
[mm] \exists x_1 \exists x_2 \exists x_3 (x_1 \not= x_2 \wedge x_2 \not= x_3 \wedge x_1 \not= x_3 [/mm] )
oder muss ich schreiben:
[mm] \exists x_1 \exists x_2 \exists x_3 \neg (x_1 [/mm] = [mm] x_2) \wedge \neg(x_2 [/mm] = [mm] x_3) \wedge \neg(x_1= x_3 [/mm] )
Wir haben die semiformale Sprache nie definiert sondern verwenden sie statt der Prädikatenlogik für eine einfachere Sichtbarkeit für die Übungen.
> Gib eine unendliche Satzmenge T an die genau die unendliche Struktur als Modelle hat.
Ist für mich auch klar.
> Argumentiere ohne Beweis dass es keinen Satz gibt, der genau die endlichen Strukturen als Modell hat
Hier weiß ich nicht weiter.
recherche ergab: Formelmenge [mm] \phi [/mm] , die beliebig mächtige endliche Modelle besitzt , besitzt auch ein unendliches Modell. Aber wie erkläre ich das intuitv?
EDIT: HAT SICH SCHON ERLEDIGT ! KONNTE ES LÖSEN!!
|
|
|