www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Scheitelpunkt Parabel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Mathe Klassen 8-10" - Scheitelpunkt Parabel
Scheitelpunkt Parabel < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Scheitelpunkt Parabel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:41 Di 19.08.2008
Autor: alexandrafluegel

Aufgabe
y = [mm] 2x^2 [/mm] - 6x +5
y = [mm] 2x(x^2 [/mm] - 3x + 2,5)
y = 2 [(x - [mm] 1,5)^2 [/mm] + 0,25]
y = 2 (x - [mm] 1,5)^2 [/mm] + 0,5
S = (1,5|0,5)

Hallo
ich verstehe nicht richtig wie ich bei meiner Parabel auf die Scheitelpunkte komme. Wie komme ich in der dritten Reihe auf die -1,5 und die + 0,25?
Danke schon mal im Vorraus.

Gruß Alexandra

        
Bezug
Scheitelpunkt Parabel: Lösung
Status: (Antwort) fehlerhaft Status 
Datum: 10:59 Di 19.08.2008
Autor: MarthaLudwig

Hallo Alexandra !

Deine zweite Zeile ist falsch,korrekt ist:

[mm] 2*x*(x^2-3*x+2.5). [/mm]

T= [mm] x^2-3*x+2.5 [/mm]

Teile in  T den Term mit x durch 2,u=-3/2,

quadriere [mm] u,v=u^2=9/4=2.25, [/mm]

subtrahiere den letzten Term von T von v,w=2.5-2.25=0.25.

Hoffe,daß ich helfen konnte.

Grüße Martha

Bezug
                
Bezug
Scheitelpunkt Parabel: zuviel ausgeklammert
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 11:02 Di 19.08.2008
Autor: Loddar

Hallo Martha!


> Deine zweite Zeile ist falsch,korrekt ist:
>  
> [mm]2*x*(x^2-3*x+2.5).[/mm]

[notok] Da gehört überhaupt kein $x_$ außerhalb der Klammer hin. Es wird lediglich $2_$ ausgeklammert.


Gruß
Loddar


Bezug
        
Bezug
Scheitelpunkt Parabel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:07 Di 19.08.2008
Autor: alexandrafluegel

Wie komme ich denn von der zweiten Zeile in die dritte Zeile meiner Aufgabe?

Bezug
                
Bezug
Scheitelpunkt Parabel: binomische Formel
Status: (Antwort) fertig Status 
Datum: 11:14 Di 19.08.2008
Autor: Loddar

Hallo Alexandra!


Hier wurde die 2. MBbinomische Formel rückwärts angewandt. Es gilt:
[mm] $$x^2-3*x+2.5 [/mm] \ = \ [mm] x^2-2*\bruch{3}{2}*x+2.5 [/mm] \ = \ [mm] x^2-2*\blue{\bruch{3}{2}}*x+\left(\blue{\bruch{3}{2}}\right)^2-\left(\bruch{3}{2}\right)^2+2.5 [/mm] \ = \ [mm] x^2-2*\bruch{3}{2}*x+\left(\bruch{3}{2}\right)^2-\bruch{9}{4}+\bruch{5}{2} [/mm] \ = \ ...$$

Gruß
Loddar


Bezug
                        
Bezug
Scheitelpunkt Parabel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:26 Di 19.08.2008
Autor: alexandrafluegel

Ok die -1,5 sind mir jetzt klar, aber die 0,25 versteh ich immer noch nicht.

Gruß Alexandra

Bezug
                                
Bezug
Scheitelpunkt Parabel: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Di 19.08.2008
Autor: angela.h.b.


> Ok die -1,5 sind mir jetzt klar, aber die 0,25 versteh ich
> immer noch nicht.

Hallo,

Du hast

[mm] y=2*[x^2-3x+2.5] [/mm]

[mm] =2*[\green{x²-3x+}\underbrace{\green{1.5^2}-1.5^2}_{=+0}+2.5] [/mm]

[mm] =2[\green{(x-1.5)^2}\underbrace{-1.5^2+2.5}_{=+0.25}] [/mm]

[mm] =2*[(x-1.5)^2+0.25] [/mm]

Gruß v. Angela

Bezug
        
Bezug
Scheitelpunkt Parabel: Berechnung des Scheitelpunktes
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:17 Di 19.08.2008
Autor: flash789

um den scheitelpunkt zu berechnen nimm die 1. ableitung der parabel setze f'(x)= 0 berechne x und setze x dann in f(x) ein und du erhältst y.     SP(x/y)

Bezug
                
Bezug
Scheitelpunkt Parabel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:35 Di 19.08.2008
Autor: MiMa90


> um den scheitelpunkt zu berechnen nimm die 1. ableitung der
> parabel setze f'(x)= 0 berechne x und setze x dann in f(x)
> ein und du erhältst y.

In dieser Jahrgangstufe kennt man noch keine Ableitung und da bleibt nur die Umformung durch die Binomischen Formeln....


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]