www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikScheitelpunkt bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik" - Scheitelpunkt bestimmen
Scheitelpunkt bestimmen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Scheitelpunkt bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Mi 31.01.2007
Autor: xquantumx

Aufgabe
Bestimme den Scheitelpunkt folgender Funktion:
g(x)= (x-x1)²+ ...+ (x-xn)²  

hallo,
mir sagt diese Funktion nicht allzu viel und deshalb bitte ich um einen Tipp.

vielen dank!  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Scheitelpunkt bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Mi 31.01.2007
Autor: M.Rex

Hallo

> Bestimme den Scheitelpunkt folgender Funktion:
>  g(x)= (x-x1)²+ ...+ (x-xn)²
> hallo,
>  mir sagt diese Funktion nicht allzu viel und deshalb bitte
> ich um einen Tipp.
>  
> vielen dank!  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Hier versuch mal, die ganzen binomischen Formeln aufzulösen:

g(x)= (x-x1)²+ ...+ (x-xn)²
[mm] =(x²-2x_{1}x+x_{1}^{2})+...+(x²-2x_{n}x+x_{n}^{2}) [/mm]
[mm] =\underbrace{x²+x²+...+x²}_{n-mal}-(2x_{1}+...+2x_{n})x+(x_{1}^{2}+...+x_{n}^{2}) [/mm]
[mm] =nx²-\underbrace{(\summe_{i=1}^{n}2x_{i})}_{:=a}x+\underbrace{(\summe_{i=1}^{n}x_{i}^{2})}_{:=b} [/mm]
=nx²-ax+b

Und davon suchst du den Scheitelpunkt.
Kleiner Tipp noch: Der x-Wert legt genau zwischen den Nullstellen der Parabel.

Marius

Bezug
                
Bezug
Scheitelpunkt bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:16 Mi 31.01.2007
Autor: xquantumx

Aufgabe

g(x)= (x-x1)²+ ...+ (x-xn)²
$ [mm] =(x²+2x_{1}x+x_{1})+...+(x²+2x_{n}x+x_{n}) [/mm] $
$ [mm] =\underbrace{x²+x²+...+x²}_{n-mal}+(2x_{1}+...+2x_{n})x+(x_{1}^{2}+...+x_{1}^{2}) [/mm] $
$ [mm] =nx²+\underbrace{(\summe_{i=1}^{n}2x_{i})}_{:=a}x+\underbrace{(\summe_{i=1}^{n}x_{i}^{2})}_{:=b} [/mm] $

hallo,
vielen dank erstmal für die Antwort.
Müsste das nicht eigentich in der zweiten Zeile x²-2x1x+x1² ... usw. lauten? Und wenn ja warum so...
ich versteh die dritte Zeile noch nicht so ganz.



Bezug
                        
Bezug
Scheitelpunkt bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Mi 31.01.2007
Autor: M.Rex

Hallo

Hast recht, in der zweiten Zeile müsste jeweils noch ein ² stehen, ich ändere es aber jetzt.

in der dritten Zeile habe ich, was ja bei einer Addition möglich ist, die Terme sortiert, und zwar, zuerst die x², dann die Terme mit x und dann die Terme ohne Variablen

Marius

Bezug
                        
Bezug
Scheitelpunkt bestimmen: Noch was.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 Mi 31.01.2007
Autor: M.Rex

Ich habe in meiner ersten Antwort auch übersehen, dass dort jeweils die 2. binomische Formel gegeben war, und verbessert.

Es ändert sich nur das Vorzeichen vor den gemischten Termen, also

[mm] (x-x_{i})=x²\red{-}2x_{i}*x+x_{i}^{2} [/mm]

Marius

Bezug
                        
Bezug
Scheitelpunkt bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:32 Mi 31.01.2007
Autor: xquantumx

hi,
müsste da nicht eigentlich nx²-2nxx1+x1² rauskommen ?
vielen Dank schonmal :)

Bezug
                                
Bezug
Scheitelpunkt bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:35 Mi 31.01.2007
Autor: M.Rex


> hi,
>  müsste da nicht eigentlich nx²-2nxx1+x1² rauskommen ?
>  vielen Dank schonmal :)  

Nein, in den Termen kommt ja erstmal kein n vor, das n in nx² kommt daher, weil ich n-mal x² addiere, und das zusammenfassen kann zu n*x²


Marius

Bezug
                
Bezug
Scheitelpunkt bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 Mi 31.01.2007
Autor: xquantumx

Also bis zum Sortieren habe ich eigentlich alles Verstanden. Außer, dass du aufeinmal ganz viele ( x1² ... x1² )hast. Die Zeile danach wirft sehr viele Fragezeichen auf.
Wie kommt man dann aufeinmal auf nx²+ax+b?

Bezug
                        
Bezug
Scheitelpunkt bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:32 Mi 31.01.2007
Autor: M.Rex


> Also bis zum Sortieren habe ich eigentlich alles
> Verstanden. Außer, dass du aufeinmal ganz viele ( x1² ...
> x1² )hast.

Schon geändert, es heisst [mm] x_{1}²+...+x_{\red{n}}² [/mm]

Die Zeile danach wirft sehr viele Fragezeichen

> auf.

Ich habe dann n-mal x²+...+x² zu nx² zusammengefasst, und die anderen mit der Summenschreibweise zusammengefasst.

> Wie kommt man dann auf einmal auf nx²+ax+b?

Indem man das per Summenschreibweise zusammengefasste so definiert. Weil, wenn du jetzt den Scheitelpunkt berechnen sollst, ist der Term einfach nur hinderlich. Also kannst du von nx²-ax+b den Scheitel berechnen und dann wieder die Summenschreibweise einsetzen.

Ich komme übrigens auf den x-Wert des Scheitels bei

[mm] x_{s}=\bruch{a}{2n}=\bruch{\summe_{i=1}^{n}2x_{i}}{2n}=\bruch{\summe_{i=1}^{n}x_{i}}{n} [/mm]

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]