www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisScheitelpunktform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Scheitelpunktform
Scheitelpunktform < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Scheitelpunktform: Erklärung
Status: (Frage) beantwortet Status 
Datum: 17:38 Mi 02.11.2005
Autor: Sarita

Hallo,
ich schreibe Freitag Mathe und hätte da eine Frage:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


1. Wie berechnet man die Scheitelpunktform von Parabeln 2ter Ordnung?
    (bitte bei Erklärung die pq Formel und nicht die quadrat. Ergänzung  
     berücksichtigen)

        
Bezug
Scheitelpunktform: Verständnis?
Status: (Antwort) fertig Status 
Datum: 18:04 Mi 02.11.2005
Autor: Herby

Hallo Sarita,
und [willkommenmr]


wieso die Scheitelform ohne quadratische Ergänzung [haee]

was genau möchtest du den wissen?

gibt es einen aktuellen Anlass?  (eigentlich schon, sonst hättest du ja nicht gefragt :-))

eine kleine Info darüber bringt uns dann sicher weiter

Schau mal hier: MBScheitelpunktform und hier: MBParabel

lg
Herby

Bezug
                
Bezug
Scheitelpunktform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Do 03.11.2005
Autor: Sarita

na, ich würde die Berechnung der Scheitelpunkts(form) gerne mit der pq-Formel erklärt bekommen und nicht mit der quadrt. Ergänzung.
Soweit ich weiß, rechnet man nämlich entweder mit der quadrt. Ergänzung oder mit der pq-Formel?

Der aktuelle Anlass ist eine Klausur, die ich morgen schreibe und da dieses thema dran kommt, was wir theoretisch schon in der 1tten gehabt haben sollten, aber nie hatten, hätte ich gerne eine kleine Hilfestellung dazu bzw. eine Beispielaufgabe...

Danke für Links, die kenne ich allerdings schon und konnte damit leider nicht allzu viel anfangen.

lg Sarita

Bezug
                        
Bezug
Scheitelpunktform: Mathebank!
Status: (Antwort) fertig Status 
Datum: 19:06 Do 03.11.2005
Autor: informix

Hallo Sarita,
[willkommenmr]

> na, ich würde die Berechnung der Scheitelpunkts(form) gerne
> mit der pq-Formel erklärt bekommen und nicht mit der
> quadrt. Ergänzung.
>  Soweit ich weiß, rechnet man nämlich entweder mit der
> quadrt. Ergänzung oder mit der pq-Formel?
>  
> Der aktuelle Anlass ist eine Klausur, die ich morgen
> schreibe und da dieses thema dran kommt, was wir
> theoretisch schon in der 1tten gehabt haben sollten, aber
> nie hatten, hätte ich gerne eine kleine Hilfestellung dazu
> bzw. eine Beispielaufgabe...
>  

[guckstduhier] MBParabel, MBScheitelpunktform in unserer MBMatheBank

Gruß informix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]