www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMechanikSchiefe Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Mechanik" - Schiefe Ebene
Schiefe Ebene < Mechanik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schiefe Ebene: Berechnung ohne gegebene Masse
Status: (Frage) beantwortet Status 
Datum: 12:51 Sa 17.01.2009
Autor: toynrw

Aufgabe
Ein Körper rutscht auf einer schiefen Ebene mit einem Neigungswinkel von 30° aus einer Höhe h1= 1m hinunter.
Er rutscht die Strecke l= 2m weiter horizontal und anschließend wieder eine schiefe Ebene mit einem Neigungswinkel 60° hinauf.
Gleitreibungszahl überall [mm] \mu=0,1 [/mm] .
Masse ist nicht gegeben.

a) Berechnen sie v am Fuß der ersten schiefen Ebene.
b) Berechnen sie v am Fuß der zweiten schiefen Ebene
c) Bis zu welcher Höhe rutscht der Körper auf der zweiten schiefen Ebene?

Hallo Zusammen,

dies ist eine Aufgabe aus einer Probeklausur und wir haben noch keine Antworten oder Hinweise dazu. Kann mir jemand helfen den Hinweis zu finden. Habe schon die Idee mit Energieerhaltung zu rechnen. Doch ich verzweifle daran, dass ich keine Masse gegeben habe.

Bitte um den Ansatz für die Energieerhaltung oder sonstige Hinweise und Ideen.

Danke


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schiefe Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Sa 17.01.2009
Autor: ardik

Hallo toynrw,

> Habe schon die Idee mit Energieerhaltung zu rechnen.

Das erscheint mir sinnvoll.

> Doch ich verzweifle daran, dass ich keine Masse gegeben habe.

Stelle die Ansätze „wie gewohnt“ zusammen und verwende einfach nur m für die Masse. Im Laufe der Rechnung dürfte sie sich komplett „rauskürzen“.

Und Du musst für jeden Abschnitt die durch die Reibung verbrauchte Energie berücksichtigen. Für den waagerechten Abschnitt also:

[mm] $W_{kin(vor)}=W_{kin(nach)}+W_{reib}$ [/mm]

Klappt's jetzt?

Schöne Grüße
 ardik

Bezug
                
Bezug
Schiefe Ebene: Immer noch nicht
Status: (Frage) beantwortet Status 
Datum: 12:37 So 18.01.2009
Autor: toynrw

Hallo, leider funktioniert es so nicht. Ich habe ja keine Anfangsgeschwindigkeit gegeben.

Habe nun einen Energieerhaltungssatz ertellt:

[mm] E_{pot} [/mm] - [mm] E_{reib} [/mm] = [mm] E_{kin} [/mm]

also:  m*g*h - [mm] \mu*m*g*cos (\alpha) [/mm] = [mm] \bruch{1}{2}*m*v^{2} [/mm]

Ich komme dann aber nach Auflösen auf einen negativen Wert unter der Wurzel, also scheint mein Ansatz falsch. Hat noch jemand eine Idee dazu?

Bezug
                        
Bezug
Schiefe Ebene: Lösung gefunden für Aufgabe ay
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:46 So 18.01.2009
Autor: toynrw

Hallo Zusammen,

ganz abgesehen dass ich oben die Strecke vergessen habe bei der Reibungsenergie, habe ich es nun gelöst und habe 2,01 [mm] \bruch{m}{s} [/mm] als Ergebnis.
Hat jemand eine Idee, ob das stimmt.

Ich versuche mich jetzt mal an Teil b)

Bezug
                        
Bezug
Schiefe Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 So 18.01.2009
Autor: xPae


> Hallo, leider funktioniert es so nicht. Ich habe ja keine
> Anfangsgeschwindigkeit gegeben.
>  
> Habe nun einen Energieerhaltungssatz ertellt:
>  
> [mm]E_{pot}[/mm] - [mm]E_{reib}[/mm] = [mm]E_{kin}[/mm]
>  
> also:  m*g*h - [mm]\mu*m*g*cos (\alpha)[/mm] = [mm]\bruch{1}{2}*m*v^{2}[/mm]
>

das ist korrekt, aber es kommt meiner meinung nicht 2m/s raus.

Für die waagerechte:

[mm] E_{kin} [/mm] = [mm] E_{kin}+E_{Reibung} [/mm]

für das zweite stückt gilt dann:

[mm] E_{kin} [/mm] = [mm] E_{pot} [/mm] + [mm] E_{Reibung} [/mm]

m kürzt sich immer raus.

Du kannst das auch anders (über Kräfte rechnen), wenn dir das besser liegt:

[mm] F_{resultierend} [/mm] = [mm] F_{H} [/mm] - [mm] F_{Reibung} [/mm]

m*a = m*g [mm] *sind(\alpha) [/mm] - [mm] m*g*cos(\alpha)*\mu [/mm]

dann gilt für die Beschleunigung:

a= [mm] g(sin(\alpha)-cos(\alpha)*\mu) [/mm]
und so weiter

Aber über den Energiesatz ist es leichter.
Falsch ist eigentlich [mm] E_{Reibung} [/mm] zu sagen, denn es ist Reibungsarbeit.
Hat ja die gleiche Einheit wie die Energie Joule, deshalb gehts.


> Ich komme dann aber nach Auflösen auf einen negativen Wert
> unter der Wurzel, also scheint mein Ansatz falsch. Hat noch
> jemand eine Idee dazu?

Ich rechne Dir mal den ersten Teil vor:

[mm] E_{pot} [/mm] = [mm] E_{kin} [/mm] + [mm] W_{Reibung} [/mm]

m*g*h = 0.5*m*v² + [mm] m*g*cos(\alpha)*\mu*s [/mm]

m kürzt sich den kram rübergebracht und mal 2:
s= [mm] \bruch{h}{sin(\alpha)} [/mm] = 2m

[mm] \wurzel{g*2*(h-cos(\alpha)*\mu*s)} [/mm] = v
v= 4,027m/s

Zur Veranschaulichung über die Kräfte:

[mm] F_{resultierend}=F_{H} [/mm] - [mm] F_{R} [/mm]

a= [mm] g(sin(\alpha)-cos(\alpha)*\mu) [/mm]

a=4,05m/s²

s=0,5*a*t²
[mm] t=\wurzel{\bruch{2s}{a}} [/mm]
t=0.994s

dann v=a*t

eingesetzt

v=4,026m/s
Jetzt bist du dran ;)

Viel Glück


Bezug
                                
Bezug
Schiefe Ebene: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 19:36 So 18.01.2009
Autor: ardik

Hallo xPae,

> > [mm]E_{pot}[/mm] - [mm]E_{reib}[/mm] = [mm]E_{kin}[/mm]
>  >  
> > also:  m*g*h - [mm]\mu*m*g*cos (\alpha)[/mm] = [mm]\bruch{1}{2}*m*v^{2}[/mm]
> >
> das ist korrekt,

[notok]
In der zweiten Zeile steht letztlich
[mm] $E_{pot} [/mm] - [mm] \red{F}_{reib} [/mm] = [mm] E_{kin}$ [/mm]
(s.a. meine zweite Antwort.)

Schöne Grüße
 ardik

Bezug
                        
Bezug
Schiefe Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 So 18.01.2009
Autor: ardik

Hallo toynrw,

> Hallo, leider funktioniert es so nicht. Ich habe ja keine
> Anfangsgeschwindigkeit gegeben.

Mein Beispiel bezog sich auf das Mittelstück, wo ja zu dessen Beginn die Endgeschwindigkeit von der schiefen Ebene abwärts vorliegt.

> Habe nun einen Energieerhaltungssatz ertellt:
>  
> [mm]E_{pot}[/mm] - [mm]E_{reib}[/mm] = [mm]E_{kin}[/mm]

[ok]
  

> also:  $m*g*h - [mm] \red{\mu*m*g*cos (\alpha)} [/mm] = [mm] \bruch{1}{2}*m*v^{2}$[/mm] [/mm]

Du ziehst nicht [mm] $E_{reib}$ [/mm] ab sondern [mm] $F_{reib}$. [/mm] Diese musst Du ja noch mit der zu rutschenden Strecke ($h* [mm] \sin \alpha$) [/mm] multiplizieren um [mm] $E_{reib}$ [/mm] zu erhalten.

Schöne Grüße
 ardik

Bezug
                                
Bezug
Schiefe Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:36 So 18.01.2009
Autor: xPae

ja stimmt, aber das mit der Strecke hatte er ja schon selber festgestellt. war mehr auf die aufstellung des energiesatzes bezogen gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]