www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperSchnitt von Körpererweiterunge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Schnitt von Körpererweiterunge
Schnitt von Körpererweiterunge < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnitt von Körpererweiterunge: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:20 So 01.07.2012
Autor: diddy449

Aufgabe
Seien [mm] $\IQ$ [/mm] ein Körper und [mm] $(\mu_m,*)$, $(\mu_n,*)$ [/mm] endliche Untergruppen von [mm] \IQ, [/mm] also die Menge der m-ten, n-ten Einheitswurzeln.
Zeige:

[mm] $\IQ(\mu_m)\cap \IQ(\mu_n) [/mm] = [mm] \IQ(\mu_m\cap \mu_n) [/mm] $



Hey Leute,
ich zermatter mir hier den Kopf:

[mm] $"\supseteq"$ [/mm] klar

[mm] $"\subseteq"$ [/mm]
Hier komm ich nicht klar. Mein Ansatz ist (ich hänge aber nicht an diesem Ansatz):

Wenn ich mir das Körperdiagramm mit
[mm] $$\IQ(\mu_m),\IQ(\mu_n)\supseteq\IQ(\mu_m)\cap \IQ(\mu_n) \supseteq \IQ(\mu_m\cap \mu_n) \supseteq \IQ$$ [/mm]
aufzeichne, will ich zeigen, dass es keinen Körper K mit
[mm] $$\IQ(\mu_m),\IQ(\mu_n)\supset [/mm] K [mm] \supset \IQ(\mu_m\cap \mu_n) \supseteq \IQ$$ [/mm]
gibt.

Erstmal habe ich
[mm] $$\mu_m\cap \mu_n [/mm] = [mm] \mu_{ggT(m,n)}$$ [/mm]
gezeigt und weiter betrachte ich die Grade der Körpererweiterungen und bringe so die Eulersche-Phi-Funktion ins Spiel.
Es ist also erstmal gesammelt:

- [mm] $[\IQ(\mu_m) [/mm] : [mm] \IQ] [/mm] = [mm] \phi(m)$ [/mm]
- [mm] $[\IQ(\mu_n) [/mm] : [mm] \IQ] [/mm] = [mm] \phi(n)$ [/mm]
- [mm] $[\IQ(\mu_{ggT(m,n)}) [/mm] : [mm] \IQ] [/mm] = [mm] \phi(ggT(m,n))$ [/mm]

Folglich ist:

- [mm] $k:=[\IQ(\mu_m) [/mm] : [mm] \IQ(\mu_{ggT(m,n)})] [/mm] = [mm] \frac{\phi(m)}{\phi(ggT(m,n))}$ [/mm]
- [mm] $l:=[\IQ(\mu_n) [/mm] : [mm] \IQ(\mu_{ggT(m,n)})] [/mm] = [mm] \frac{\phi(n)}{\phi(ggT(m,n))}$ [/mm]

Jetzt muss für den Grad eines solchen Körpers K
$$1< [K: [mm] \IQ(\mu_{ggT(m,n)})] [/mm] < min(k,l)$$
gelten, da ansonsten $K= [mm] \IQ(\mu_{ggT(m,n)})$ [/mm] oder [mm] $K\in\{\IQ(\mu_m),\IQ(\mu_n)\}$ [/mm] wäre.

Wenn ich also zeigen kann, dass $ggT(k,l) = 1$ ist oder es eine Primzahl p mit $p= ggT(k,l) [mm] \in\{k,l\}$ [/mm] (#) gibt, so könnte es ein solches K nicht geben und die Behauptung wäre gezeigt.

Ich habe diese Aussage(#) an ein paar Beispielen ausprobiert und dort stimmte sie.
Deshalb glaube ich, dass sie stimmt. Doch krieg ich sie nicht bewiesen.

Bitte um Hilfe, ob bei diesem Ansatz oder Hinweise zu anderen Ansätzen.

Vielen Dank schonmal


        
Bezug
Schnitt von Körpererweiterunge: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Mo 02.07.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]