www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenSchnittgerade
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Geraden und Ebenen" - Schnittgerade
Schnittgerade < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittgerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Sa 16.05.2009
Autor: Mandy_90

Aufgabe
Gegeben sind die Ebenen [mm] E_{1}:x+2y+z=4, E_{2}:x=2 [/mm] und [mm] E_{3}:x-y+z=1. [/mm]
Gibt es eine Gerade die auf allen drei Ebenen liegt?

Hallo zusammen^^

Ich bin bei dieser Aufgabe nicht sicher ob ich die richtige Lösungsidee habe.
Kann ich hier einfach die Shcnittgerade von zwei Ebenen berechnen und überprüfen ob diese auch auf der dritten liegt?Das mache ich natürlich mit allen drei Ebenen und wenn dies der Fall ist dann gibt es eine Gerade die auf allen drei Ebenen liegt.
Kann man das so machen oder geht das anders???


Vielen Dank

lg

        
Bezug
Schnittgerade: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Sa 16.05.2009
Autor: glie


> Gegeben sind die Ebenen [mm]E_{1}:x+2y+z=4, E_{2}:x=2[/mm] und
> [mm]E_{3}:x-y+z=1.[/mm]
>  Gibt es eine Gerade die auf allen drei Ebenen liegt?
>  Hallo zusammen^^
>  
> Ich bin bei dieser Aufgabe nicht sicher ob ich die richtige
> Lösungsidee habe.
>  Kann ich hier einfach die Shcnittgerade von zwei Ebenen
> berechnen und überprüfen ob diese auch auf der dritten
> liegt?Das mache ich natürlich mit allen drei Ebenen und
> wenn dies der Fall ist dann gibt es eine Gerade die auf
> allen drei Ebenen liegt.
>  Kann man das so machen oder geht das anders???
>  
>
> Vielen Dank
>  
> lg

Hallo Mandy,
deine Idee ist schon sehr gut.
Es genügt schon, die Schnittgerade der Ebenen [mm] E_1 [/mm] und [mm] E_2 [/mm] zu bestimmen und dann zu überprüfen, ob die Ebene [mm] E_3 [/mm] diese Gerade enthält.

Gruß Glie



Bezug
                
Bezug
Schnittgerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:59 Sa 16.05.2009
Autor: Mandy_90

ok Vielen Dank =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]