www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisSchnittgerade von E1 und E2
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Schnittgerade von E1 und E2
Schnittgerade von E1 und E2 < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittgerade von E1 und E2: Frage
Status: (Frage) beantwortet Status 
Datum: 14:32 Mo 17.01.2005
Autor: Maiko

Hallo!
Ich habe mal eine Frage.

z.B.:
Ich habe die Aufgabe, die Schnittgerade zweier Ebenen
3x-5y-4z=11
3x-3y+z=5
zu bestimmen.

Zuerst nehme ich das Kreuzprodukt der Normalvektoren und habe somit den Richtungsvektor der Gerade:
=(-17;-15;6)

Jetzt muss ich noch den Anfangspunkt der Gerade bestimmen.
Ich habe hier 2 Gleichungen und 3 Unbekannte.
Woher weiß ich, ob ich nun die x-,y-, oder z-Koordinate =0 setzen muss, um zum Ergebnis zu gelangen?

        
Bezug
Schnittgerade von E1 und E2: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Mo 17.01.2005
Autor: Christian

Hallo.

Wenn Du doch den Richtungsvektor schon hast, tuts doch jeder beliebige Punkt der Geraden. Setzt Du z.B. z=0, so erhältst Du y=-3 und x=-4/3.
Damit bist Du dann eigentlich schon fertig.

Gruß,
Christian

Bezug
                
Bezug
Schnittgerade von E1 und E2: Frage
Status: (Frage) beantwortet Status 
Datum: 09:46 Di 18.01.2005
Autor: Maiko

Ich habe noch bissel Probleme, mir das bildlich vorzustellen.

Wenn ich den Richtungsvektor des Schnittes der Ebenen habe, dann kann ich doch nicht jeden beliebigen Punkt als Stützvektor der Geraden verwenden?!

Kann ich auch die x-,y- Koordinate =0 setzen? Oder warum wurde hier z = 0 gesetzt?

Wie muss ich mir das vorstellen, wenn ich eine Koordinate des Normalvektors der Ebenen 0 setze? Warum komm ich dann auf das Ergebnis?

Kann mir das nochmal bitte jmd. anschaulich erklären?

Bezug
                        
Bezug
Schnittgerade von E1 und E2: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Di 18.01.2005
Autor: Christian

Hallo nochmal.

Also nochmal langsam.
Du hast den Richtungsvektor deiner Geraden bereits gegeben. Um die Gerade eindeutig anzugeben, brauchst Du nur noch einen beliebigen Punkt der Geraden zu wissen. Das ist dir soweit schon klar, oder?

Wenn Du jetzt ein Gleichungssystem ansetzt für den Schnitt der beiden Ebenen, dann sind die x,y,z die das Gleichungssystem lösen, eben die Punkte deiner Geraden. Weil die Gerade aber eben nur von einem Parameter abhängt, kannst Du um einen beliebigen Punkt deiner Geraden zu erhalten, für x,y,z im Prinzip einen beliebigen Wert einsetzen und nach den anderen beiden auflösen.

Ich hoffe, das ist jetzt einigermaßen klar geworden.

Gruß,
Christian

Bezug
                                
Bezug
Schnittgerade von E1 und E2: Frage
Status: (Frage) beantwortet Status 
Datum: 18:53 Di 18.01.2005
Autor: Maiko

Hmm...
Vom Lösungsprinzip her habe ich das schon verstanden, wollt mir das aber eigentlich auch bildlich vorstellen können.

Scheint nicht ganz einfach zu sein...

Bezug
                                        
Bezug
Schnittgerade von E1 und E2: bildliche Vorstellung
Status: (Antwort) fertig Status 
Datum: 12:29 Fr 21.01.2005
Autor: sawatzky

Hallo Maiko,

Als erstes: Doch es ist ganz einfach.

Die beiden Gleichungen für die Ebenen bestimmen genau eine Raumgerade.

Wenn Du jetzt den Richtungsvektor der Geraden hast, brauchst Du ja nur noch einen beliebigen Punkt der Geraden, um die Gerade genau zu bestimmen.

Jede der unendlich vielen Lösungen, die beide Ebenen-Gleichungen erfüllen, bestimmen einen Punkt der Schnitt-Geraden. (So eine Schnitt-Gerade ist ja genau die Menge aller Punkte die zu beiden Ebenen gehören)

Daher kannst Du in die Ebenen-Gleichungen jeweils denselben beliebigen Wert für eine der Unbekannten einsetzen und die anderen beiden Unbekannten darüber bestimmen. Dadurch erhälst Du dann einen Punkt der zu beiden Ebenen gehört also  zur Schnitt-Geraden und den kannst Du dann als Stützpunkt benutzen.

Ich hoffe das hilft

gruß
Astrid



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]