www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenSchnittgerade zweier Ebenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - Schnittgerade zweier Ebenen
Schnittgerade zweier Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittgerade zweier Ebenen: Schnittgerade von E mit x/y-Eb
Status: (Frage) beantwortet Status 
Datum: 11:16 Mo 17.12.2007
Autor: teledat

Hallo,
also ich habe eine Ebenengleichung gegeben und soll die Gleichung der Schnittgeraden der Ebene mit der x/y-Ebene bestimmen !?


Generell geht man so vor,
dass man zwei Ebenengleichungen gleich setzt und die errechneten Parameter dann wiederum in eine Gleichung einsetzt und man hat die fertige Gleichung der Schnittgeraden !

Meine Frage ist jedoch,
man hat dabei doch 4 unbekannte Parameter aber nur 3 Gl. zur Verfügung !?

Und in meine Fall,
wie nehem ich die Gleichung für die x/y-Ebene an ?
einfach x = (0,0,0) + r*(1,0,0) + s*(0,1,0) ???


DANKE im Voraus für jede Hilfe !

MFG


[Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.]


        
Bezug
Schnittgerade zweier Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:24 Mo 17.12.2007
Autor: angela.h.b.


> Hallo,
>  also ich habe eine Ebenengleichung gegeben und soll die
> Gleichung der Schnittgeraden der Ebene mit der x/y-Ebene
> bestimmen !?
>  
>
> Generell geht man so vor,
>  dass man zwei Ebenengleichungen gleich setzt und die
> errechneten Parameter dann wiederum in eine Gleichung
> einsetzt und man hat die fertige Gleichung der
> Schnittgeraden !
>  
> Meine Frage ist jedoch,
>  man hat dabei doch 4 unbekannte Parameter aber nur 3 Gl.
> zur Verfügung !?
>  
> Und in meine Fall,
>  wie nehem ich die Gleichung für die x/y-Ebene an ?
>  einfach x = (0,0,0) + r*(1,0,0) + s*(0,1,0) ???

Hallo,

ja, das ist die Gleichung der xy-Ebene in Parameterform.

In der Tat mußt Du sie gleichsetzen mit Deiner anderen Ebenengleichung, das liefert Dir, wei Du schon erkannt hast, drei Gleichungen mit 4 Variablen, den 4 Parametern r,s und sagen wir k,l.

Das Ziel Deiner Bemühungen muß nun sein, r in Abhängigkeit v. s zu erhalten oder k in Abhängigkeit von l,

Z.B. könntest Du so etwas haben wie  r=37+15s.

Das kannst Du dann am Ende in die passende Ebenengleichung einsetzen und erhältst, wenn Du schön sortiert hast, eine Gerade in Parameterform, die Schnittgerade.

Gruß v. Angela

Bezug
        
Bezug
Schnittgerade zweier Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:56 Mo 17.12.2007
Autor: weduwe

viel einfacher erledigst du das allerdings, wenn du die  ebene in koordinatenform nimmst.
hier wäre das z = 0.
was z.b für E: [mm] \vec{x}=\vektor{1\\2\\3}+s\vektor{4\\5\\6}+t\vektor{-1\\0\\7} [/mm] sofort die gesuchte beziehung zwischen s und t ergibt

[mm]0=3+6s+7t[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]