www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenSchnittwinkel-Tangente
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Rationale Funktionen" - Schnittwinkel-Tangente
Schnittwinkel-Tangente < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittwinkel-Tangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Fr 26.09.2008
Autor: Mandy_90

Aufgabe
Gegeben ist die Funktion [mm] f(x)=\bruch{8-x^{2}}{x^{2}+4}. [/mm]

a)Ermitteln Sie die Gleichung der Tangente an den Graphen vonf für x=2. Bestimmen Sie den Schnittwinkel der Tangente mit der y-Achse.

Hallo^^

Ich hab mal diese Aufgabe gerechnet und wollte wissen ob ich richtig gerechnet habe.

Für die Gleichung der Tangente hab ich [mm] t(x)=-\bruch{3}{4}x+2 \bruch{55}{128}. [/mm]

Bei der zweiten Frage war ich mir nicht ganz sicher,aber ich hab den Ansatz [mm] m=tan\alpha [/mm] genommen und hab für [mm] \alpha=-36,86° [/mm] raus.
Aber ich galube,dass das der Schnittwinkel mit der x-Achse ist,wie ich den von der y-Achse ausrechnen soll,weiß ich nicht genau ???

lg

        
Bezug
Schnittwinkel-Tangente: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Fr 26.09.2008
Autor: leduart

Hallo
fuer den Schnittwinkel brauchst du nur die Steigung der Tangente, die hast du richtig mit -3/4
dann hast du den Winkel zur x-Achse richtig, daraus ganz leicht, wenn du irgendne Gerade z. Bsp durch den Nullpkt mit dem Winkel zeichnest, der Winkel zur y-achse.
Gruss leduart

Bezug
                
Bezug
Schnittwinkel-Tangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:12 Fr 26.09.2008
Autor: Mandy_90


> Hallo
>  fuer den Schnittwinkel brauchst du nur die Steigung der
> Tangente, die hast du richtig mit -3/4
>  dann hast du den Winkel zur x-Achse richtig, daraus ganz
> leicht, wenn du irgendne Gerade z. Bsp durch den Nullpkt
> mit dem Winkel zeichnest, der Winkel zur y-achse.

ok,aber wie kann ich den jetzt bei dieser Aufgabe ausrechnen?


Bezug
                        
Bezug
Schnittwinkel-Tangente: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 Fr 26.09.2008
Autor: ArthurDayne

Hallo,

wie leduart schon sagte: zeichne mal den Winkel [mm] $\alpha$ [/mm] zur x-Achse z.B. beim Nullpunkt ein, dann erkennst du ganz sicher, wie du jetzt den passenden Winkel zur y-Achse bekommst ;-)

Bezug
                                
Bezug
Schnittwinkel-Tangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 Fr 26.09.2008
Autor: Mandy_90


> Hallo,
>  
> wie leduart schon sagte: zeichne mal den Winkel [mm]\alpha[/mm] zur
> x-Achse z.B. beim Nullpunkt ein, dann erkennst du ganz
> sicher, wie du jetzt den passenden Winkel zur y-Achse
> bekommst ;-)

Achso,insgesamt muss es ja 90° sein,also muss ich nur 90°-38° rechnen,dann ist der Winkel mit der y-Achse 52° oder?

Bezug
                                        
Bezug
Schnittwinkel-Tangente: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Fr 26.09.2008
Autor: ArthurDayne

Ja, das stimmt! Allerdings ist der dann nicht im mathematisch positiven Sinn, aber ich glaube, das ist hier auch nicht gewollt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]