www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenSchnittwinkel von Kurven
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Partielle Differentialgleichungen" - Schnittwinkel von Kurven
Schnittwinkel von Kurven < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittwinkel von Kurven: Tipps
Status: (Frage) beantwortet Status 
Datum: 08:33 Mi 14.09.2011
Autor: Mathegirl

Kann mir jemand an einem Beispiel erklären, wie man den Schnittwinkel von 2 Kurven berechnet, besser gesagt wie man in die  Formel einsetzt?

[mm] cos\gamma= \bruch{}{\parallel f´(t_1)\parallel * \parallel g´(t_2)\parallel} [/mm]

Vor allem wie berechnet man den Zähler?

Leider weiß ich nicht wie man den Strich oben zur Ableitung einfügt, also alle f und g sollen die erste partielle Ableitung darstellen.


MfG
Mathegirl

        
Bezug
Schnittwinkel von Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 09:09 Mi 14.09.2011
Autor: Diophant

Hallo,

da geht es ja wohl um 3D-Kuven, die durch vektorwertige Funktionen beschrieben sind. Dann steht einfach im Zähler das Skalarprodukt der beiden Ableitungen, im Nenner steht das Produkt der Beträge. Wo genau hapert es denn bzw. hättest du uns eine konkrete Aufgabe?

Gruß, Diophant

Bezug
        
Bezug
Schnittwinkel von Kurven: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:13 Mi 14.09.2011
Autor: schachuzipus

Hallo Mathegirl,


> Kann mir jemand an einem Beispiel erklären, wie man den
> Schnittwinkel von 2 Kurven berechnet, besser gesagt wie man
> in die  Formel einsetzt?
>  
> [mm]cos\gamma= \bruch{}{\parallel f´(t_1)\parallel * \parallel g´(t_2)\parallel}[/mm]
>  
> Vor allem wie berechnet man den Zähler?
>
> Leider weiß ich nicht wie man den Strich oben zur
> Ableitung einfügt,

Das geht mit der Tastenkombination "Shift" und "#"

f'(x)


Gruß

schachuzipus


Bezug
        
Bezug
Schnittwinkel von Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 21:03 Mi 14.09.2011
Autor: hippias

Hallo Mathegirl!

Ein Beispiel:
$f(t):=( 1,t, [mm] t^{2})$ [/mm] und $g(t):= (cos(t), sin(3t), sin(4t))$. Dann ist schneiden $f$ und $g$ sich and der Stelle $t=0$. Es gilt $f'(0)= (0,1,0)$ und $g'(0)= (0, 3,4)$. Das [mm] $\parallel .\parallel$ [/mm] meint wohl die euklidische Norm, also [mm] $\parallel a\parallel= \sqrt{a_{1}^{2}+a_{2}^{2}+ a_{3}^{2}}$. [/mm] Es folgt [mm] $\parallel f'(0)\parallel= [/mm] 1$ und [mm] $\parallel g'(0)\parallel= [/mm] 5$. Im Zaehler des Bruches steht das uebliche Skalarprodukt: $<a, b>= [mm] a_{1}b_{1}+ a_{2}b_{2}+ a_{3}b_{3}$. [/mm] Damit gilt hier [mm] $cos\gamma= \bruch{}{\parallel f'(0)\parallel * \parallel g'(0)\parallel}= \bruch{3}{1 * 5}$. [/mm]

O.K.?



Bezug
                
Bezug
Schnittwinkel von Kurven: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:11 Do 15.09.2011
Autor: Mathegirl

Vielen Dank!!

An dem beispiel konnte ich das super nachvollziehen und hab es jetzt verstanden!!
Vielen Dank!! :)


MfG
Mathegirl

Bezug
                
Bezug
Schnittwinkel von Kurven: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Di 26.06.2012
Autor: paula_88

Hallo,
ich war auch gerade auf der Suche nach einem Beispiel zur Berechnung von Schnittwinkeln und habe zu diesem hier gleich mal eine Frage:

> Ein Beispiel:
>  [mm]f(t):=( 1,t, t^{2})[/mm] und [mm]g(t):= (cos(t), sin(3t), sin(4t))[/mm].
> Dann ist schneiden [mm]f[/mm] und [mm]g[/mm] sich and der Stelle [mm]t=0[/mm].  Wie kann ich diesen Schnittpunkt errechnen? (Falls er mal nicht bei 0 liegt und weniger ersichtlich ist??)

Es gilt

> [mm]f'(0)= (0,1,0)[/mm] und [mm]g'(0)= (0, 3,4)[/mm]. Das [mm]\parallel .\parallel[/mm]
> meint wohl die euklidische Norm, also [mm]\parallel a\parallel= \sqrt{a_{1}^{2}+a_{2}^{2}+ a_{3}^{2}}[/mm].
> Es folgt [mm]\parallel f'(0)\parallel= 1[/mm] und [mm]\parallel g'(0)\parallel= 5[/mm].

Ich setze in die Ableitungen etc. doch immer den Schnittpunkt ein, oder?


> Im Zaehler des Bruches steht das uebliche Skalarprodukt:
> [mm]= a_{1}b_{1}+ a_{2}b_{2}+ a_{3}b_{3}[/mm]. Damit gilt hier
> [mm]cos\gamma= \bruch{}{\parallel f'(0)\parallel * \parallel g'(0)\parallel}= \bruch{3}{1 * 5}[/mm].

Dann wäre mir alles zu 100% klar, vielen Dank :-)

Bezug
                        
Bezug
Schnittwinkel von Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 Di 26.06.2012
Autor: angela.h.b.


> Hallo,
>  ich war auch gerade auf der Suche nach einem Beispiel zur
> Berechnung von Schnittwinkeln und habe zu diesem hier
> gleich mal eine Frage:
>  
> > Ein Beispiel:
>  >  [mm]f(t):=( 1,t, t^{2})[/mm] und [mm]g(t):= (cos(t), sin(3t), sin(4t))[/mm].
> > Dann ist schneiden [mm]f[/mm] und [mm]g[/mm] sich and der Stelle [mm]t=0[/mm].
> Wie
> kann ich diesen Schnittpunkt errechnen? (Falls er mal nicht
> bei 0 liegt und weniger ersichtlich ist??)

Hallo,

indem Du f(t)=g(t) irgendwie löst.

>  
> Es gilt
> > [mm]f'(0)= (0,1,0)[/mm] und [mm]g'(0)= (0, 3,4)[/mm]. Das [mm]\parallel .\parallel[/mm]
> > meint wohl die euklidische Norm, also [mm]\parallel a\parallel= \sqrt{a_{1}^{2}+a_{2}^{2}+ a_{3}^{2}}[/mm].
> > Es folgt [mm]\parallel f'(0)\parallel= 1[/mm] und [mm]\parallel g'(0)\parallel= 5[/mm].
>
> Ich setze in die Ableitungen etc. doch immer den
> Schnittpunkt ein, oder?

Ja, das t, für das f(t)=g(t).

>  
>
> > Im Zaehler des Bruches steht das uebliche Skalarprodukt:
> > [mm]= a_{1}b_{1}+ a_{2}b_{2}+ a_{3}b_{3}[/mm]. Damit gilt hier
> > [mm]cos\gamma= \bruch{}{\parallel f'(0)\parallel * \parallel g'(0)\parallel}= \bruch{3}{1 * 5}[/mm].

Ja.

LG Angela

>  
> Dann wäre mir alles zu 100% klar, vielen Dank :-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]