www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikSchrödingergleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Physik" - Schrödingergleichung
Schrödingergleichung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schrödingergleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:20 Sa 26.03.2011
Autor: LordPippin

Hallo,
ich hänge schon seit gestern an dem besagten Thema fest und komme einfach nicht weiter.
Konkret möchte ich die Lösungen der Schrödingergleichung für eine Potentialstufe berechnen.
Das Potential sei 0 und bei X=0 steigt es bis ins Unendliche auf [mm] E_{0} [/mm] an. Das Teilchen kommt aus der negativen x-Richtung.
Als Lösung für die erste Wellenfunktion von [mm] -\infty [/mm] bis 0 habe ich: [mm] \psi_{I}=Ae^{ikx}+Be^{-ikx}, [/mm] wobei A die Amplitude der einlaufenden (in +x-Richtung) und B die Amplitude der auslaufenden(/reflektieretn???) Welle ist.
Für den Bereich x=0 bis ins Unendliche bekomme ich als Lösung [mm] \psi_{II}=Ce^{\alpha*x}+De^{-\alpha*x}, [/mm] wobei [mm] \alpha=\bruch{\sqrt{2m(E-E_{0})}}{\hbar}. [/mm] Wie ist das jetzt hier mit den Amplituden? Was ist C und was ist D?
Als nächstes wären ja die Randbedingungen zu klären.
Wenn [mm] E_{0}>E: [/mm]
[mm] \psi_{I}(x=0)=\psi_{II}(x=0) [/mm]  =>  A+B=C+D
die Ableitungen von [mm] \psi_{I} [/mm] und [mm] \psi_{II} [/mm] bei X=0 müssen dann auch gleich sein =>  [mm] ik(A-B)=\alpha(C-D) [/mm]

Ab hier komme ich jetzt nicht mehr weiter. Vielleicht kann mir jemand helfen.

Vielen Dank,

LordPippin

        
Bezug
Schrödingergleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 Sa 26.03.2011
Autor: LordPippin

C ist die Amplitude der Welle, die über die Potentialstufe kommt und D muss dann die dort reflektierte Welle sein. Im ersten Fall, wenn [mm] E
Bezug
        
Bezug
Schrödingergleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 Sa 26.03.2011
Autor: qsxqsx

Hallo,

Der Ansatz für die Wellenfunktion im Potential [mm] E_{0} [/mm] ist Grundstätzlich richtig. Jedoch musst du dir zwei Dinge überlegen bzw. praktisch denken:

1. Für reelle alpha:
Kann es sein dass die Funktion plötzlich mit [mm] Ce^{\alpha\cdot{}x} [/mm] ins unendliche ansteigt? Kann es sein dass die Funktion mit [mm] De^{-\alpha\cdot{}x} [/mm] abfällt? Je nach dem einen Term wegstreichen.
2. Wie sieht das aus mit dem Term [mm] \bruch{\sqrt{2m(E-E_{0})}}{\hbar}. [/mm] Wenn E < [mm] E_{0} [/mm] ist ja [mm] \alpha [/mm] immaginär. Macht es Sinn, dass sich die Wellenfunktion mit einer Sinusschwingung fortplanzt für  E < [mm] E_{0}?(Eher [/mm] nicht......)

Gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]