www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieSchubfachprinzip
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Zahlentheorie" - Schubfachprinzip
Schubfachprinzip < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schubfachprinzip: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:27 Fr 18.04.2008
Autor: DaSaver

Aufgabe
Ein Sportler trainiert 44 Tage lang, jeden Tag gibt es mindestens eine Trainingseinheit. Insgesamt macht er in diesen 44 Tagen 70 Trainingseinheiten.

Zeige, dass es ein Intervall gibt, in dem der Sportler genau 17 Mal trainiert (also dass es Zahlen [mm]i[/mm] und [mm]j[/mm] gibt derart, dass vom [mm]i[/mm]-ten Tag bis zum [mm]j[/mm]-ten Tag inklusive genau 17 Mal trainiert wird).

Halihallo!

Die Aufgabe ist anscheinend mit Schubfachprinzip zu lösen, ich komme aber nicht drauf. Der Sportler kann die verbleibenden [mm]70-44=26[/mm] frei auf die 44 Tage verteilen. Aber wie komme ich von hier auf die Aufgabenstellung?..:-/

        
Bezug
Schubfachprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 Sa 19.04.2008
Autor: felixf

Hallo

> Ein Sportler trainiert 44 Tage lang, jeden Tag gibt es
> mindestens eine Trainingseinheit. Insgesamt macht er in
> diesen 44 Tagen 70 Trainingseinheiten.
>  
> Zeige, dass es ein Intervall gibt, in dem der Sportler
> genau 17 Mal trainiert (also dass es Zahlen [mm][mm]i[/mm][/mm] und [mm][mm]j[/mm][/mm] gibt derart, dass vom [mm][mm]i[/mm]-ten[/mm] Tag bis zum [mm][mm]j[/mm]-ten[/mm] Tag inklusive genau 17 Mal trainiert wird).[/mm][/mm][/mm][/mm]
> [mm][mm][mm][mm] Halihallo![/mm][/mm][/mm][/mm]
> [mm][mm][mm][mm] [/mm][/mm][/mm][/mm]
> [mm][mm][mm][mm]Die Aufgabe ist anscheinend mit Schubfachprinzip zu lösen, ich komme aber nicht drauf. Der Sportler kann die verbleibenden [mm]70-44=26[/mm] frei auf die 44 Tage verteilen. Aber wie komme ich von hier auf die Aufgabenstellung?..:-/ [/mm][/mm][/mm][/mm]

Schau dir doch mal die Folgen [mm] $a_n \in \IN$ [/mm] an, $n [mm] \in \{ 1, 2, \dots, 44 \}$, [/mm] wobei [mm] $a_n$ [/mm] die Anzahl der Trainingseinheiten angibt, die bis einschliesslich dem $n$-ten Tag abgeleistet wurden. Setze [mm] $a_0 [/mm] := 0$. Du weisst [mm] $a_{n+1} [/mm] > [mm] a_n$ [/mm] fuer $n [mm] \in \{ 0, \dots, 43 \}$ [/mm] und [mm] $a_{44} [/mm] = 70$. Du suchst jetzt $n, m [mm] \in \{ 0, \dots, 44 \}$ [/mm] mit [mm] $a_m [/mm] - [mm] a_n [/mm] = 17$.

Um das Schubfachprinzip anzuwenden, musst du dir die Folge [mm] $a_n$ [/mm] wohl modulo 17 anschauen. Dann gibt es auch jeden Fall mehre $n, m$ so, dass [mm] $a_m [/mm] - [mm] a_n$ [/mm] durch 17 teilbar ist. Das ist schonmal ein Anfang, vielleicht kommst du damit weiter :)

LG Felix


Bezug
                
Bezug
Schubfachprinzip: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 Sa 19.04.2008
Autor: DaSaver


> Schau dir doch mal die Folgen [mm]a_n \in \IN[/mm] an, [mm]n \in \{ 1, 2, \dots, 44 \}[/mm],
> wobei [mm]a_n[/mm] die Anzahl der Trainingseinheiten angibt, die bis
> einschliesslich dem [mm]n[/mm]-ten Tag abgeleistet wurden. Setze [mm]a_0 := 0[/mm].
> Du weisst [mm]a_{n+1} > a_n[/mm] fuer [mm]n \in \{ 0, \dots, 43 \}[/mm] und
> [mm]a_{44} = 70[/mm]. Du suchst jetzt [mm]n, m \in \{ 0, \dots, 44 \}[/mm]
> mit [mm]a_m - a_n = 17[/mm].
>  
> Um das Schubfachprinzip anzuwenden, musst du dir die Folge
> [mm]a_n[/mm] wohl modulo 17 anschauen. Dann gibt es auch jeden Fall
> mehre [mm]n, m[/mm] so, dass [mm]a_m - a_n[/mm] durch 17 teilbar ist. Das ist
> schonmal ein Anfang, vielleicht kommst du damit weiter :)
>  
> LG Felix
>  

Ok, als "Schubfächer" nehme ich dann die Reste von [mm](a_n)[/mm] modulo 17. Dann gibt es in jedem "Schubfach" mind. [mm]floor(70/17)=4[/mm] Elemente, richtig? Jetzt nehme ich als "Schubfächer" Zahlen 17,34,51,68 und verteile diese 4*17=68 Elemente auf diese Fächer. Dann gibt es auf jeden Fall mind. 1 Element im 1. Fach. Stimmt es so oder habe ich hier Unfug gerechnet?:)

Bezug
                        
Bezug
Schubfachprinzip: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 11:18 So 20.04.2008
Autor: felixf

Hallo!

> Ok, als "Schubfächer" nehme ich dann die Reste von [mm](a_n)[/mm]
> modulo 17. Dann gibt es in jedem "Schubfach" mind.
> [mm]floor(70/17)=4[/mm] Elemente, richtig?

Nein, gerade nicht! Das Schubfachprinzip sagt nur, dass es in jedem Fach mindestens ein Element gibt. Und wir wissen das die Summe der Anzahlen von Elementen in allen Faechern 70 ergibt.

> Jetzt nehme ich als
> "Schubfächer" Zahlen 17,34,51,68 und verteile diese 4*17=68
> Elemente auf diese Fächer.

Sorry, ich versteh grad nicht was du meinst.

LG Felix


Bezug
                                
Bezug
Schubfachprinzip: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 12:00 So 20.04.2008
Autor: anstei

Hallo Felix,

> Hallo!
>  
> > Ok, als "Schubfächer" nehme ich dann die Reste von [mm](a_n)[/mm]
> > modulo 17. Dann gibt es in jedem "Schubfach" mind.
> > [mm]floor(70/17)=4[/mm] Elemente, richtig?
>  
> Nein, gerade nicht! Das Schubfachprinzip sagt nur, dass es
> in jedem Fach mindestens ein Element gibt. Und wir wissen
> das die Summe der Anzahlen von Elementen in allen Faechern
> 70 ergibt.

Nein, das Schubfachprinzip besagt, da 70 > 68 = 4*17, dass es mindestens ein Fach mit mindestens 5 Elementen drin hat. Und daraus lässt sich jetzt einfach ein vollständiger Beweis basteln :)

Viele Grüsse,
Andreas



Bezug
                                
Bezug
Schubfachprinzip: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:18 So 20.04.2008
Autor: felixf

Hallo

> > Ok, als "Schubfächer" nehme ich dann die Reste von [mm](a_n)[/mm]
> > modulo 17. Dann gibt es in jedem "Schubfach" mind.
> > [mm]floor(70/17)=4[/mm] Elemente, richtig?
>  
> Nein, gerade nicht! Das Schubfachprinzip sagt nur, dass es
> in jedem Fach mindestens ein Element gibt. Und wir wissen
> das die Summe der Anzahlen von Elementen in allen Faechern
> 70 ergibt.

Tja, das ist auch falsch: es besagt nur, dass es mind. ein Fach gibt, in dem es > 1 Element gibt. Und wie Andreas gesagt hat, soger noch besser: es sagt, dass es in mind. einem Fach mind. 5 Elemente gibt. (Das kannst du zeigen mit der Annahme, dass es in jedem Fach weniger als 5 Elemente gibt, dann bekommst du schnell einen Widerspruch.)

Danke fuer den Hinweis Andreas :)

LG Felix


Bezug
                                        
Bezug
Schubfachprinzip: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:03 So 20.04.2008
Autor: DaSaver

Hallo!

ich hab es jetzt hinbekommen mit dem Beweis, danke nochmals für den Tipp!

Viele Grüße,
Michael

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]