www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikSchubfachprinzip
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Kombinatorik" - Schubfachprinzip
Schubfachprinzip < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schubfachprinzip: Hilfe Schubfachprinzip & Koeff
Status: (Frage) beantwortet Status 
Datum: 03:36 Mi 05.12.2012
Autor: peter9938

Aufgabe
1.)Zeigen Sie unter Verwendung des Schubfachprinzipes, dass jede 5-elementige
Teilmenge von {1,2,3,4,5,6,7,8} mindestens zwei Zahlen enthält, deren
Summe 9 ist.

2.) Bestimmen Sie den Koeffizienten von [mm] x^2y^5 [/mm] in (x + [mm] y)^7 [/mm] und von wx^4y^3z
in (w + x + y + [mm] z)^9. [/mm] ja der Multinomialkoeffizient... bloß wie...

Ich verzweifel hier an den Aufgaben, vorallem bei 1 weiß ich überhaupt nicht wie ich das korrekt mathematisch beweisen soll.

1.)Zeigen Sie unter Verwendung des Schubfachprinzipes, dass jede 5-elementige
Teilmenge von {1,2,3,4,5,6,7,8} mindestens zwei Zahlen enthält, deren
Summe 9 ist.

2.) Bestimmen Sie den Koeffizienten von [mm] x^2y^5 [/mm] in (x + [mm] y)^7 [/mm] und von wx^4y^3z
in (w + x + y + [mm] z)^9. [/mm] ja der Multinomialkoeffizient... bl
oß wie...


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schubfachprinzip: Einfach Überlegungen...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:21 Mi 05.12.2012
Autor: Marcel

Hallo,

ich poste Dir einfach mal meine bisherigen Überlegungen
von heute morgen, vielleicht läßt sich wenigstens was
drauf aufbauen:

> 1.)Zeigen Sie unter Verwendung des Schubfachprinzipes, dass
> jede 5-elementige
>  Teilmenge von {1,2,3,4,5,6,7,8} mindestens zwei Zahlen
> enthält, deren
>  Summe 9 ist.

mal so ein kleines Vorgeplänkel:

erstens:
[mm] $$9=1+8=2+7=3+6=4+5\;\;\;(=5+4=6+3=7+2=8+1)\,.$$ [/mm]

Zweitens:
Aus erstens folgt, dass wir nur zeigen müssen, dass für [mm] $j_0 \in \{1,2,3,4,5,6,7,8\}$ [/mm]
eine Menge [mm] $M_{j_0}$ [/mm] der folgenden Mengen
[mm] $$M_j:=\{j,9-j\}\;\;\;(j=1,\ldots,8)$$ [/mm]
erfüllt:
[mm] $$M_{j_0} \subseteq F\,,$$ [/mm]
wenn $F [mm] \subseteq M:=\{1,2,3,4,5,6,7,8\}$ [/mm] erfüllt: [mm] $|F|=5\,.$ [/mm]

Offenbar gilt aber [mm] $M_j=M_{9-j}\,,$ [/mm] so dass sich die Aufgabe auf folgendes
reduziert:
Ist $F [mm] \subseteq [/mm] M$ mit [mm] $|F|=5\,,$ [/mm] so existiert zu dieser Menge [mm] $F\,$ [/mm] ein
[mm] $j_0 \in \{1,2,3,4\}$ [/mm] mit [mm] $M_{j_0} \subseteq F\,.$ [/mm]

Zeigen wir dies nun also:
Zunächst gibt es offenbar ${|M| [mm] \choose [/mm] 2}={8 [mm] \choose [/mm] 2}=8*7/2!=28$ zweielementige
Teilmengen von [mm] $M\,.$ [/mm] Wie oben gesehen, sind vier dieser Teilmengen
so gestrickt, dass die Summe der beiden enthaltenen Elemente eben 9
ergibt. Also gibt es 24=28-4 zweielementige Teilmengen von [mm] $M\,$ [/mm] derart,
dass die Summe der beiden enthaltenen Elemente eben [mm] $\not=9$ [/mm] ist.

Naja, jetzt kommt die Frage, wie man nun das
Schubfachprinzip ins Spiel bringen kann...

Gruß,
  Marcel

Bezug
        
Bezug
Schubfachprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Mi 05.12.2012
Autor: reverend

Hallo peter9938, [willkommenmr]

Das Schubfachprinzip wird man hier wohl ein bisschen erweitern müssen...

> 1.)Zeigen Sie unter Verwendung des Schubfachprinzipes, dass
> jede 5-elementige
>  Teilmenge von {1,2,3,4,5,6,7,8} mindestens zwei Zahlen
> enthält, deren
>  Summe 9 ist.
>  
> 2.) Bestimmen Sie den Koeffizienten von [mm]x^2y^5[/mm] in (x + [mm]y)^7[/mm]
> und von wx^4y^3z
>  in (w + x + y + [mm]z)^9.[/mm] ja der Multinomialkoeffizient...
> bloß wie...

>

>  Ich verzweifel hier an den Aufgaben, vorallem bei 1 weiß
> ich überhaupt nicht wie ich das korrekt mathematisch
> beweisen soll.

Es reicht übrigens, wenn Du Deine Aufgabe einmal einstellst, sie muss nicht im "task"-Feld und im folgenden Text stehen. ;-)

zu 1)
Wie Marcel schon feststellt, gibt es vier Paare, die sich jeweils zu 9 summieren. Wir erweitern das Schubfachprinzip mal zum Schrank mit vier Schubladen. Die eine ist mit "1,8" beschriftet, die zweite mit "2,7", die dritte mit "3,6" und die vierte mit "4,5".

Nun sollen fünf Zahlen entsprechend deren Beschriftung in vier Schubladen gelegt werden. Also muss mindestens eine Schublade zwei Zahlen beinhalten.

zu 2)
[mm] x^2y^5 [/mm] hat den Koeffizienten [mm] \vektor{7\\2}=\vektor{7\\5}. [/mm] Binomischer Lehrsatz.

Den Koeffizienten von $wx^4y^3z$ kann man auch ohne Multinomialsatz herleiten.
Das w stammt aus einem der 9 Faktoren (9 Möglichkeiten), das z aus einem der 8 übrigen (8 Möglichkeiten), und die x oder y auszuwählen, geht auf [mm] \vektor{7\\3}=\vektor{7\\4} [/mm] Weisen. Die Verteilung der letzten Variable ist dann fest.
Also [mm] 9*8*\bruch{7*6*5}{1*2*3}=2520. [/mm]

Versuch doch mal, diese Zahl mit einem Multinomialkoeffizienten zu erzeugen. Das geht. ;-)

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]