Schwache Konvergenz 2 < stoch. Analysis < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Untersuchen Sie, ob für [mm]n\to\infty[/mm] die Wahrscheinlichkeitsmaße [mm]P_{n}[/mm] mit folgenden Wahrscheinlichkeitsdichten [mm]f_{n}[/mm] schwach konvergieren, und bestimmen Sie gegebenenfalls den Grenzwert:
b) [mm] f_{n}(x) [/mm] = [mm] \frac{n+1}{n}*x^{\frac{1}{n}}*1_{[0,1]}(x)
[/mm]
c) [mm] f_{n}(x) [/mm] = [mm] \frac{1}{n}*1_{[0,n]}(x) [/mm] |
Hallo,
Bei den zwei Aufgaben oben wollte ich nochmal zur Sicherheit nachfragen.
b)
Die Verteilung von [mm] X_{n} [/mm] ist [mm] $F_{n}(x) [/mm] = [mm] x^{1+\frac{1}{n}}*1_{[0,1]}(x)$, [/mm] und die konvergiert punktweise gegen die Verteilung $F(x) = [mm] x*1_{[0,1]}(x)$.
[/mm]
Stimmt das?
c)
Die Verteilung von [mm] X_{n} [/mm] lautet [mm] $F_{n}(x) [/mm] = [mm] \frac{1}{n}*x*1_{[0,n]}(x)$.
[/mm]
Mhhh. Für endliche n klappt das ja, aber wenn [mm] n\to\infty, [/mm] dann konvergiert [mm] F_{n}(x) [/mm] punktweise gegen die Nullfunktion, d.h. F(x) = 0. Das ist aber keine Verteilungsfunktion mehr.
Das heißt, es gibt kein X sodass [mm] X_{n}\overset{D}{\to}X, [/mm] also konvergiert [mm] X_{n} [/mm] nicht schwach gegen irgendwas?
Danke für Eure Hilfe!
Grüße,
Stefan
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:51 Do 07.01.2010 | Autor: | luis52 |
> Hallo,
>
> Bei den zwei Aufgaben oben wollte ich nochmal zur
> Sicherheit nachfragen.
>
> b)
>
> Die Verteilung
Verteilung*sfunktion*
> von [mm]X_{n}[/mm] ist [mm]F_{n}(x) = x^{1+\frac{1}{n}}*1_{[0,1]}(x)[/mm],
[mm]F_{n}(x) = x^{1+\frac{1}{n}}*1_{[0,1]}(x)+1_{(1,\infty)}(x)[/mm] (Soviel Zeit muss sein!)
> und die konvergiert punktweise gegen die Verteilung [mm]F(x) = x*1_{[0,1]}(x)[/mm].
>
> Stimmt das?
Mit den ensprechenden Korrekturen, ja.
>
> c)
>
> Die Verteilung von [mm]X_{n}[/mm] lautet [mm]F_{n}(x) = \frac{1}{n}*x*1_{[0,n]}(x)[/mm].
s.o.
>
> Mhhh. Für endliche n klappt das ja, aber wenn [mm]n\to\infty,[/mm]
> dann konvergiert [mm]F_{n}(x)[/mm] punktweise gegen die
> Nullfunktion, d.h. F(x) = 0. Das ist aber keine
> Verteilungsfunktion mehr.
> Das heißt, es gibt kein X sodass [mm]X_{n}\overset{D}{\to}X,[/mm]
> also konvergiert [mm]X_{n}[/mm] nicht schwach gegen irgendwas?
Na, nicht so ein Gossenjargon!
vg Luis
|
|
|
|
|
Hallo luis,
danke für deine Antwort!
Bezüglich der Verteilungsfunktionen - da hab' ich ja wieder rumgeschludert - irgendwie hatte ich eine völlig falsche Denkweise im Kopf, als ich die aufgestellt habe. Jetzt geht's aber wieder
> > Mhhh. Für endliche n klappt das ja, aber wenn [mm]n\to\infty,[/mm]
> > dann konvergiert [mm]F_{n}(x)[/mm] punktweise gegen die
> > Nullfunktion, d.h. F(x) = 0. Das ist aber keine
> > Verteilungsfunktion mehr.
> > Das heißt, es gibt kein X sodass
> [mm]X_{n}\overset{D}{\to}X,[/mm]
> > also konvergiert [mm]X_{n}[/mm] nicht schwach gegen irgendwas?
>
> Na, nicht so ein Gossenjargon!
Wie muss es denn dann formuliert werden ?
Ich kann nachweisen, dass [mm] F_{n}(x) [/mm] punktweise gegen F(x) = 0 konvergiert. Das bedeutet, dass [mm] F_{n}(x) [/mm] nicht mehr gegen etwas anderes punktweise konvergieren kann. F(x) ist aber wegen [mm] $\lim_{x\to\infty}F(x) [/mm] = 0$ keine Verteilungsfunktion.
Wie schließe ich denn jetzt den Bogen dazu, dass [mm] X_{n} [/mm] also nicht schwach gegen "irgendwas" konvergieren kann?
Danke für Eure Hilfe!
Grüße,
Stefan
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:13 Fr 08.01.2010 | Autor: | luis52 |
>
> Wie schließe ich denn jetzt den Bogen dazu, dass [mm]X_{n}[/mm]
> also nicht schwach gegen "irgendwas" konvergieren kann?
Vielleicht so: [mm] [i]$(X_n)$ [/mm] besitzt keine Grenzverteilung im Sinne der Schwachen Konvergenz.[/i]
vg Luis
|
|
|
|