www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenSchwerpunkt eines Dreiecks
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Vektoren" - Schwerpunkt eines Dreiecks
Schwerpunkt eines Dreiecks < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwerpunkt eines Dreiecks: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Mi 31.03.2010
Autor: Fawkes

Aufgabe
Gegeben sind die Punkte A(0/2/3), B(6/0/6) und C(2/5/9)
Bestimmen Sie den Schwerpunkt des Dreiecks.

Hallo,
rechne hier schon eine ganze Weile rum, komme aber nicht auf ein sinnvolles Ergebnis.
Deshalb hier mal mein Lösungsversuch:
Bestimme zuerst zwei Geraden wie folgt:
[mm] \overrightarrow{OB}+1/2\overrightarrow{BC}=\overrightarrow{OP_1} [/mm]
einsetzen:
[mm] \vektor{6 \\ 0 \\ 6}+1/2\vektor{-4 \\ 5 \\ 3}=\vektor{4 \\ 2,5 \\ 7,5} [/mm]

[mm] \overrightarrow{P_1A}: \vektor{0 \\ 2 \\ 3}-\vektor{4 \\ 2,5 \\ 7,5}=\vektor{-4 \\ -0,5 \\ -4,5} [/mm]

Daraus folgt erste Geradengleichung:
[mm] \overrightarrow{OX_1}:= \vektor{4 \\ 2,5 \\ 7,5}+\lambda\vektor{-4 \\ -0,5 \\ -4,5} [/mm]

[mm] \overrightarrow{OA}+1/2\overrightarrow{AB}=\overrightarrow{OP_2} [/mm]
einsetzen:
[mm] \vektor{0 \\ 2 \\ 3}+1/2\vektor{6 \\ -2 \\ 3}=\vektor{3 \\ 1 \\ 4,5} [/mm]

[mm] \overrightarrow{P_2C}: \vektor{2 \\ 5 \\ 9}-\vektor{3 \\ 1 \\ 4,5}=\vektor{-1 \\ 4 \\ 4,5} [/mm]

Daraus folgt zweite Geradengleichung:
[mm] \overrightarrow{OX_2}:= \vektor{3 \\ 1 \\ 4,5}+\mu\vektor{-1 \\ 4 \\ 4,5} [/mm]

Jetzt:
[mm] \overrightarrow{OX_1}=\overrightarrow{OX_2} [/mm]
[mm] \gdw\vektor{4 \\ 2,5 \\ 7,5}+\lambda\vektor{-4 \\ -0,5 \\ -4,5}=\vektor{3 \\ 1 \\ 4,5}+\mu\vektor{-1 \\ 4 \\ 4,5} [/mm]
[mm] \gdw\lambda\vektor{-4 \\ -0,5 \\ -4,5}-\mu\vektor{-1 \\ 4 \\ 4,5}=\vektor{3 \\ 1 \\ 4,5}-\vektor{4 \\ 2,5 \\ 7,5} [/mm]
[mm] \gdw\lambda\vektor{-4 \\ -0,5 \\ -4,5}-\mu\vektor{-1 \\ 4 \\ 4,5}=\vektor{-1 \\ -1,5 \\ -3} [/mm]

Rechnet man das nun mit einer Matrix weiter aus, so folgt ein Widerspruch in Form von:
[mm] \lambda=1/3 [/mm]
[mm] \wedge \mu=1/3 [/mm]
[mm] \wedge -4\lambda+\mu=-1 [/mm]

Kann auch gerne noch einmal meine Matrizen aufschreiben, dachte mir aber falls in meiner obigen Rechnung schon ein Fehler steckt lohnt sich das hinterher nicht so wirklich.
Wäre für Antworten dankbar.
Gruß Fawkes

        
Bezug
Schwerpunkt eines Dreiecks: Antwort
Status: (Antwort) fertig Status 
Datum: 16:06 Mi 31.03.2010
Autor: Sigrid

Hallo Fawkes,

Duhast alles richtig gerechnet. Die Probe stimmt doch auch. s.u.

> Gegeben sind die Punkte A(0/2/3), B(6/0/6) und C(2/5/9)
>  Bestimmen Sie den Schwerpunkt des Dreiecks.
>  Hallo,
>  rechne hier schon eine ganze Weile rum, komme aber nicht
> auf ein sinnvolles Ergebnis.
>  Deshalb hier mal mein Lösungsversuch:
>  Bestimme zuerst zwei Geraden wie folgt:
>  
> [mm]\overrightarrow{OB}+1/2\overrightarrow{BC}=\overrightarrow{OP_1}[/mm]
>  einsetzen:
>  [mm]\vektor{6 \\ 0 \\ 6}+1/2\vektor{-4 \\ 5 \\ 3}=\vektor{4 \\ 2,5 \\ 7,5}[/mm]
>  
> [mm]\overrightarrow{P_1A}: \vektor{0 \\ 2 \\ 3}-\vektor{4 \\ 2,5 \\ 7,5}=\vektor{-4 \\ -0,5 \\ -4,5}[/mm]
>  
> Daraus folgt erste Geradengleichung:
>  [mm]\overrightarrow{OX_1}:= \vektor{4 \\ 2,5 \\ 7,5}+\lambda\vektor{-4 \\ -0,5 \\ -4,5}[/mm]
>  
> [mm]\overrightarrow{OA}+1/2\overrightarrow{AB}=\overrightarrow{OP_2}[/mm]
>  einsetzen:
>  [mm]\vektor{0 \\ 2 \\ 3}+1/2\vektor{6 \\ -2 \\ 3}=\vektor{3 \\ 1 \\ 4,5}[/mm]
>  
> [mm]\overrightarrow{P_2C}: \vektor{2 \\ 5 \\ 9}-\vektor{3 \\ 1 \\ 4,5}=\vektor{-1 \\ 4 \\ 4,5}[/mm]
>  
> Daraus folgt zweite Geradengleichung:
>  [mm]\overrightarrow{OX_2}:= \vektor{3 \\ 1 \\ 4,5}+\mu\vektor{-1 \\ 4 \\ 4,5}[/mm]
>  
> Jetzt:
> [mm]\overrightarrow{OX_1}=\overrightarrow{OX_2}[/mm]
> [mm]\gdw\vektor{4 \\ 2,5 \\ 7,5}+\lambda\vektor{-4 \\ -0,5 \\ -4,5}=\vektor{3 \\ 1 \\ 4,5}+\mu\vektor{-1 \\ 4 \\ 4,5}[/mm]
>  
> [mm]\gdw\lambda\vektor{-4 \\ -0,5 \\ -4,5}-\mu\vektor{-1 \\ 4 \\ 4,5}=\vektor{3 \\ 1 \\ 4,5}-\vektor{4 \\ 2,5 \\ 7,5}[/mm]
>  
> [mm]\gdw\lambda\vektor{-4 \\ -0,5 \\ -4,5}-\mu\vektor{-1 \\ 4 \\ 4,5}=\vektor{-1 \\ -1,5 \\ -3}[/mm]
>  
> Rechnet man das nun mit einer Matrix weiter aus, so folgt
> ein Widerspruch in Form von:
>  [mm]\lambda=1/3[/mm]
>  [mm]\wedge \mu=1/3[/mm]
>  [mm]\wedge -4\lambda+\mu=-1[/mm]

Es gilt doch:  - 4/3 + 1/3 = - 1

Wo siehst Du da einen Widerspruch?

>  
> Kann auch gerne noch einmal meine Matrizen aufschreiben,
> dachte mir aber falls in meiner obigen Rechnung schon ein
> Fehler steckt lohnt sich das hinterher nicht so wirklich.
>  Wäre für Antworten dankbar.
>  Gruß Fawkes


Bezug
                
Bezug
Schwerpunkt eines Dreiecks: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:24 Mi 31.03.2010
Autor: Fawkes

Danke schön!!!
:D Wie heißt es doch so schön manchmal sieht man vor lauter Bäumen den Wald nicht mehr ;)
Gruß Fawkes

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]