Schwerpunktberechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:01 Mo 13.07.2009 | Autor: | petick |
Aufgabe | 2x²+x-96=0
N1 = - 7,18271
N2 = +6,68271
Scheitelpunkt = (96,25 | -0,5)
Integrale von -7,18271 bis +6,68271 (2/3*6,68271³+1/2*6,68271 ²-96*6,68271 )-(2/3*(-7,18271³)+1/2*(-7,18271²)-96*(-7,18271))
=888,5426280 |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich weiß den Schritt nicht, wie ich die gerechneten bzw. gegebenen Daten in die Formel Xs=Integrale von n1 bis n2 xdA / A einfüge. A ist meines erachtens 888,542628 aber was bedeutet xdA. Das Gleiche bei Ys was bedeutet hier ydA
|
|
|
|
Hallo petick,
> 2x²+x-96=0
> N1 = - 7,18271
> N2 = +6,68271
> Scheitelpunkt = (96,25 | -0,5)
> Integrale von -7,18271 bis +6,68271
> (2/3*6,68271³+1/2*6,68271 ²-96*6,68271
> )-(2/3*(-7,18271³)+1/2*(-7,18271²)-96*(-7,18271))
> =888,5426280
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
> Ich weiß den Schritt nicht, wie ich die gerechneten bzw.
> gegebenen Daten in die Formel Xs=Integrale von n1 bis n2
> xdA / A einfüge. A ist meines erachtens 888,542628 aber
> was bedeutet xdA. Das Gleiche bei Ys was bedeutet hier ydA
"dA" ist das Flächenelement "dy dx".
So daß hier die Integrale lauten:
[mm]\integral_{n_{1}}^{n_2}}{\integral_{0}^{f\left(x\right)}{ x \ dy} \ dx}[/mm] und [mm]\integral_{n_{1}}^{n_2}}{\integral_{0}^{f\left(x\right)}{ y \ dy} \ dx}[/mm]
Gruß
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:28 Mo 13.07.2009 | Autor: | petick |
Ich steh halt voll auf dem Schlauch. Die erste Integrale von N1 bis N2 ist mir irgendwo noch klar. Bei der zwiten Integrale denke ich, das hie in dem Falle gemeint ist von -96,25 bis Null aber wie berechne ich dy und dx?
|
|
|
|
|
Hallo petick,
> Ich steh halt voll auf dem Schlauch. Die erste Integrale
> von N1 bis N2 ist mir irgendwo noch klar. Bei der zwiten
> Integrale denke ich, das hie in dem Falle gemeint ist von
> -96,25 bis Null aber wie berechne ich dy und dx?
Die Grenzen von y sind hier abhängig von x.
"dy dx" sagt nur aus, daß Du zuerst nach y integrieren
und dann nach x integrieren sollst.
[mm]\integral_{n_{1}}^{n_2}}{\integral_{0}^{f\left(x\right)}{ x \ dy} \ dx} = \integral_{n_{1}}^{n_2}}{\left( \ \integral_{0}^{f\left(x\right)}{ x \ dy} \ \right) \ dx}[/mm]
[mm]\integral_{n_{1}}^{n_2}}{\integral_{0}^{f\left(x\right)}{ y \ dy} \ dx} =\integral_{n_{1}}^{n_2}}{\left( \ \integral_{0}^{f\left(x\right)}{ y \ dy} \ \right) \ dx}[/mm]
Gruß
MathePower
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:10 Mo 13.07.2009 | Autor: | petick |
Dank!
|
|
|
|