www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikSchwimmer / Ventilanhebung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Physik" - Schwimmer / Ventilanhebung
Schwimmer / Ventilanhebung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwimmer / Ventilanhebung: hydrostatik
Status: (Frage) beantwortet Status 
Datum: 12:06 Do 27.09.2012
Autor: bammbamm

Aufgabe
Aufgabenstellung siehe Bild




Hallo MR,

Irgendwie verstehe ich absolut nicht wie in der Musterlösung das Volumen welches zum Auftrieb beiträgt berechnet wird.

Meiner Meinung nach müsste einfach nur das Volumen des Kegelstumpfs (welcher sich im Wasser befindet) zum Auftrieb beitragen ?

Das wäre dann allerdings [mm] F_a=\rho_W [/mm] * g * [mm] V_{KS} [/mm] mit [mm] V_{KS}=\bruch{h}{2}*\bruch{\pi}{3}*((\bruch{d_1}{2})^2+\bruch{d_1}{2}*\bruch{d_2}{2}+(\bruch{d_2}{2})^2) [/mm]

Desweiteren verstehe ich nicht wie die Druckkraft berechnet wird.
Der Druck in der Tiefe h auf die Grundfläche des Kegelventils müsste sich doch berechnen aus
[mm] F_p [/mm] = [mm] \bruch{\pi}{4}*d_1^2 [/mm] * [mm] (\rho_W*g*(h_0-\bruch{h}{2})+p_0) [/mm]

Vielleicht hinterblickt jemand von euch was hier gemacht wurde ?


Bilder mit Aufgabenstellung und Musterlösung:

[]Bild 1
[]Bild 2

        
Bezug
Schwimmer / Ventilanhebung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Do 27.09.2012
Autor: chrisno

Zum Nachrechnen fehlt mir gerade die Zeit. Ich vermute daher nur:
Der Kegel wird in zwei Teilgebilde zerlegt: einen Zylinder mit Spitze, der genau das Loch verschließt.
Für diesen Zylinder Wird die Druckkraft berechnet, eine Auftriebskraft gibt es nicht, da die kein Wasser von unten dagegen drückt. Dann gibt es einen Kegelstumpf mit zylindrischer Bohrung. Für diesen wird die Auftriebskraft berechnet.

Bezug
        
Bezug
Schwimmer / Ventilanhebung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:38 Fr 28.09.2012
Autor: Event_Horizon

Hallo!

Chrisno hat vollkommen recht. Ein schwimmfähiger Körper, der am Grunde eines mit Wasser gefüllten Beckens so liegt, daß kein Wasser unter ihn gelangen kann, erfährt keinen Auftrieb, und wird daher nicht auftauchen.

Das gilt auch für den mittleren Teil des Stopfens, so daß nur der äußere, ringförmige Teil Auftrieb liefert.

Anschaulich: Zerlege den Stopfen in viele kleine senkrechte,  stiftförmige Teile. Die, die am unteren Ende im Wasser sind, erfahren durch den Wasserdruck eine Kraftkomponente nach oben, aber auch eine Kraft am oberen Ende nach unten. Die Differenz ist der Auftrieb und ergibt sich aus der Druckdifferenz, bzw eben der Masse des verdrängten Wassers. Daß es am unteren Ende auch eine seitliche Kraftkomponente gibt, sollte dich dabei nicht stören.

Zu der zweiten Frage mit der Kraft:

Der Druck von oben auf den äußeren Ring des Stopfens verrechnet sich mit dem Druck von unten zum Auftrieb, der mittlere Teil des Stopfens trägt dazu nicht bei. Allerdings erfährt der mittlere Teil eine Kraft nach unten, die über den Druck an der Oberseite und seine Fläche mit Durchmesser [mm] d_2=\frac{d_1}{2} [/mm] gegeben ist. Der Radius ist daher [mm] \frac{d_1}{4}, [/mm] und daher gibts in der Formel ein [mm] \frac{d_1^2}{16}. [/mm]

Nebenbei, den statischen Druck [mm] p_0 [/mm] kannst du getrost streichen, da der immer überall gleich ist.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]