Schwingungen eines Fadenpendel < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Ein Fadenpendel hat die Länge l=1,2m. Seine Amplitude beträgt A=3cm, zum
Zeitpunkt t=0 wird es aus dem Zustand maximaler Auslenkung losgelassen.
a.) Berechnen Sie die Schwingungsdauer T dieses Fadenpendels!
b.) Berechnen Sie seine Elongation zu den Zeitpunkten [mm] $t_{1}=2s$ [/mm] und [mm] $t_{2}=4,5s$, [/mm] von der Reibung werde in diesem Aufgabenteil zunächst abgesehen.
c.) Wie verändern sich die Ergebnisse zu Teil b), wenn man annimmt, dass die Amplitude in einer Zeitspanne [mm] $\Delta [/mm] t= 2s$ um 15%abnimmt (exponentiellen Verlauf beachten!)?
d.) Wieviel % der zum Zeitpunkt t=0 enthaltenen Schwingungsenergie besitzt das Pendel zu den Zeitpunkten [mm] $t_{1}$ [/mm] und [mm] $t_{2}$ [/mm] dann noch? |
Hallo!
Ich habe keine Ahnung wie man die Teilaufgabe d.) berechnen kann!?!
bei c.) bin ich mir nicht ganz, ob ich es richtig berechnet habe...
c.) Abnahme der Amplitude in einer Zeitspanne [mm] $\Delta [/mm] t=2s$ um 15%:
Elongation zu den Zeitpunkten [mm] $t_{1}$ [/mm] und [mm] $t_{2}$:
[/mm]
[mm] $s(t)=s_{0}*e^{-kt}*sin [/mm] wt$
A=3cm
T=2,198s
[mm] $t_{1}=2s$
[/mm]
[mm] $t_{2}=4,5s$
[/mm]
Zu Beginn beträgt die Maximalelongation [mm] $s_{0}=3cm$ [/mm] nach einer Zeitspanne
[mm] $\Delta [/mm] t=2s$ ist sie auf [mm] $3cm*0,85=2,55cm=s_{1}$ [/mm] gesunken:
[mm] $s_{1}=2,55s$
[/mm]
[mm] $s_{1}=s_{0}*e^{-kt}$
[/mm]
[mm] $\bruch{s_{1}}{s_{0}}=e^{-kt}$
[/mm]
$ln [mm] (\bruch{s_{1}}{s_{0}})=ln(e^{-kt})=-kt$
[/mm]
[mm] $k=\bruch{ln\bruch{s_{0}}{s_{1}}}{T}=0,074 s^{-1}$
[/mm]
[mm] $s(t_{1})=3cm*e^{-0,074 s^{-1}*2s}*sin(\bruch{2\pi}{2,198s}*4,5s)
[/mm]
[mm] $s(t_{2})=3cm*0,7168*0,293
[/mm]
$=0,63cm$
Kann mir jemand zu d.) einen Tipp geben?
Danke!!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:32 Do 30.10.2014 | Autor: | chrisno |
zu c)
Wenn bei t=0 die maximale Auslenkung vorliegen soll, dann musst Du den cos nehmen, nicht den sin.
Ansonsten sieht die Rechnung gut aus. Ich habe aber nichts eingetippt.
zu d)
Während der Schwingung (ohne Reibung) ist die Summe aus kinetischer und potentieller Energie konstant.
Ich nehme an, dass diese Summe mit dem Begriff "Schwingungsenergie" gemeint ist. Die kannst Du berechnen: [mm] $\br{m}{2}v^2 [/mm] + mgh$. Mach das ruhig mal zur Übung. Es geht aber deutlich bequemer. Dazu muss erst einmal geklärt werden, was mit der Amplitude überhaupt gemeint ist. So wie Du angesetzt hast, ist es die maximale Auslenkung entlang des Kreisbogens gemessen. Daraus kannst Du die entsprechende maximale Höhe über der Ruhelage, h, berechnen. Da dort die kinetische Energie Null ist, bist Du mit mgh am Ziel, auch wenn zu [mm] $t_1$ [/mm] und [mm] $t_2$ [/mm] das Pendel nicht die maximale Auslenkung hat.
|
|
|
|
|
Da dies eine gedämpfte Schwingung ist, ist die [mm] E_{pot}+E_{kin} [/mm] nicht konstant,
wie berechne ich also die Verminderung?
Mir ist die Masse zudem nicht bekannt, wie lässt sich die Schwingungsenergie berechnen?
Vielen Dank! :)
sun_worshipper
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:15 Sa 29.11.2014 | Autor: | leduart |
Hallo
1. in c) hast du k falsch berechnet, da darf nicht T im Nenner stehen, sondern 2s da ja die amplitude nicht in T sondern in 2s um die 15% abnimmt. dein k ist also zu klein.
Die Schwingungsenergie kannst du immer aus der momentanen Amplitude ablesen
wegen [mm] E=D/2A^2 [/mm] ist E proportional dem momentanen Amplitudenquadrat. du musst also nur das Amplitudenquadrat ohne Dämpfung ins Verhältnis zu dem mit Dämpfung ausrechnen. [mm] E_1/E_2=A_1^2/A_2^2 [/mm] wobei mit A nicht die momentane Auslenkung, sondern die momentane Amplitude gemeint ist.
Gruß leduart.
|
|
|
|
|
Vielen Dank für deine schnelle Hilfe!!
Doch habe ich die Formel zur Berechnung der Schwingungsenergie nicht
verstanden, was ist mit D in $ [mm] E=D/2A^2 [/mm] $ gemeint?
Die Dämpfung von 0.85?
Schönen Gruß,
sun_worshipper
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:04 So 30.11.2014 | Autor: | leduart |
Hallo.
was D ist ist für die Rechnung egal, die Hauptsache war dass E proportional zu [mm] a^2 [/mm] ist, aber um genau zu sein Das Kraftgesetzt sagt F=-D*s daher das D aber du brauchst es nicht, weil du ja nur das Verhältnis der Energien mit und ohne Dämpfung brauchst und da fällt D einfach raus. Du kannst auch sagen E=m/2* [mm] v_{max}^2 [/mm] und [mm] v_{max} [/mm] proportional A auch hier fallen alle Proportionalfaktoren raus.
Gruß leduart
|
|
|
|