Schwingungs-DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:23 Fr 24.04.2009 | Autor: | n33dhelp |
Aufgabe | Folgende Schwingungsdifferentialgleichung sei gegeben:
m*x''(t) + k*x(t) = [mm] 2m\omega cos(\omega*t)
[/mm]
a: Wählen sie den Parameter [mm] \omega [/mm] so, dass Resonanz im Sinne der Theorie der linearen Diefferentialgleichungen mit konstanten Koeffizienten auftritt
b: Wie lautet dann die allgemeine Lösung ? Fassen Sie diese so zusammen, dass sie die Form [mm] x(t)*sin(\omega*t [/mm] + [mm] \phi) [/mm] hat
c: Was gilt für t [mm] \to \infty [/mm] |
a:
Charakteristisches Polynom bilden und auflösen.
[mm] \Rightarrow \lambda_{1,2} [/mm] = 0 [mm] \pm \wurzel{\bruch{k}{m}*i}
[/mm]
und somit [mm] \omega [/mm] = [mm] \wurzel{\bruch{k}{m}}
[/mm]
b:
zunächst homogene lösung:
Zwei konjugiert komplexe Lösungen
[mm] \Rightarrow x_{hom}(t) [/mm] = [mm] c_{1}*cos(\omega*t) [/mm] + [mm] c_{2}*sin(\omega*t)
[/mm]
für die spezielle Lösung erhalte ich durch den Ansatz der typ der rechten Seite und anschliesendes Auflösen:
[mm] x_{spez}(t) [/mm] = [mm] t*sin(\omega*t)
[/mm]
Die allgemeine Lösung wäre ja somit:
x(t) = [mm] c_{1}*cos(\omega*t) [/mm] + [mm] c_{2}*sin(\omega*t) [/mm] + [mm] t*sin(\omega*t)
[/mm]
Habe jetzt leider nicht den Hauch einer ahnung wie ich nun diesen Ausdruck auf die oben genannte Form bringen soll. Hab mir dazu auch die Additionstheoreme angeschaut aber komm leider auf keine idee.
Wäre für Tipps / Lösungen sehr dankbar.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:39 Fr 24.04.2009 | Autor: | leduart |
Hallo n33
Wieso nimmst du direkt an, dass dein $ [mm] \omega_0 [/mm] $ = $ [mm] \wurzel{\bruch{k}{m}} [/mm] $ auch das [mm] \omega [/mm] hinten ist?
Du sollst doch das "Resonanzomega" bestimmen?
2. jede Addition [mm] A*sin(\omega*t)+B*cos(\omega*t) [/mm] kann man umformen in [mm] \wurzel{A^2+B^2}*(A/\wurzel{A^2+B^2}sin(\omega*t) +B/\wurzel{A^2+B^2}*cos(\omega*t)
[/mm]
und mit [mm] A/\wurzel{A^2+B^2}=cos(\phi)
[/mm]
[mm] B/\wurzel{A^2+B^2}=sin(\phi) [/mm] hat man dann
[mm] \wurzel{A^2+B^2}*sin(\omega*t+\phi)
[/mm]
Gruss leduart
|
|
|
|
|
Hallo leduart,
danke für deine rasche Antwort.
zu 1.
Man soll ja [mm] \omega [/mm] für "Resonanz im Sinne der Theorie der linearen Diefferentialgleichungen mit konstanten Koeffizienten" bestimmen und das ist ja nur gegeben, wenn wenn [mm] \omega [/mm] eine Nullstelle des charakteristischen Polynoms ist. Daher meine Annahme ...
zu 2.
Hab das jetzt mal so durchgerechnet und erhalte dann als Endlösung.
x(t) = [mm] \wurzel{ (t + c_{2})^{2} + c_{1}^{2}} [/mm] * [mm] sin(\omega*t [/mm] + [mm] arctan\bruch{c_{1}}{t + c_{2}})
[/mm]
Kann das soweit stimmen ? schaut für mich bissl "unschön" aus, hatte da eher auf eine aus der Physik "bekannte" Formel gehofft ^^
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:58 Sa 25.04.2009 | Autor: | leduart |
Hallo
Ich erhalte dasselbe, das wird allerdings erheblich einfacher und physikalisch einleuchtender, wenn man, wie bei angeregten Schwg. ueblich die anfangswerte x(0)=0 und x'(0)=0 einsetzt, da dann c1=c2=0
Mich stoert auch, dass die Phase von t abhaengt, sie geht aber fuer wachsendes t schnell gegen 0, so dass man fuer grosse t angenaehert immer den Zustand wie mit den genannten Anfangsbed. bekommt.
Ich lass die Frage alb offen, vielleicht faellt jemand anders was besseres ein.
Gruss leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:20 Mo 27.04.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|