www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenSeparationsansatz 3 Variablen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Partielle Differentialgleichungen" - Separationsansatz 3 Variablen
Separationsansatz 3 Variablen < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Separationsansatz 3 Variablen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:35 Di 12.06.2012
Autor: adefg

Aufgabe
Betrachten Sie die folgenden partiellen DGLn. und führen Sie jeweils mit Hilfe eines geeigneten Ansatzes die Separation der Variablen durch.

a) [mm] \frac{\partial^3\Psi}{\partial x\partial y\partial z} +xy\frac{\partial^2\Psi}{\partial z^2} +z\frac{\partial\Psi}{\partial x} [/mm] = 0

b) [mm] \frac{\partial^2\Psi}{\partial x\partial y}+\frac{\partial\Psi}{\partial z}+z\frac{\partial^2\Psi}{\partial y^2}=0 [/mm]

Hallo,
ich habe bisher Separationsansätze nur wenige Male für 2 Variablen durchgeführt, aber bei 3 Variablen hänge ich da noch etwas glaube ich.

Bei 1) habe ich den Ansatz [mm] \Psi(x,y,z)=u(x)\cdot [/mm] v(y,z) gemacht. Ableiten und Einsetzen liefert dann

[mm] u'(x)\cdot\frac{\partial^2}{\partial y\partial z}v(y,z)+xy u(x)\frac{\partial^2}{\partial z^2} [/mm] v(y,z) + z u'(x) v(y,z)=0
[mm] \Leftrightarrow \frac{1}{x}\cdot\frac{u'(x)}{u(x)}=\frac{-y \frac{\partial^2}{\partial z^2}v(y,z)}{\frac{\partial^2}{\partial y\partial z} v(y,z)+zv(y,z)} [/mm] = [mm] \lambda [/mm]

Die gewöhnliche Dgl. für x kann man jetzt problemlos lösen, für die Dgl. auf der rechten Seite habe ich dann weitergemacht mit:

-y [mm] \frac{\partial^2}{\partial z^2}v(y,z) [/mm] = [mm] \lambda\frac{\partial^2}{\partial y\partial z} v(y,z)+\lambda [/mm] zv(y,z)

Ansatz: v(y,z)=a(y)b(z) liefert

-y a(y)b''(z) = [mm] \lambda [/mm] a'(y)b'(z) + [mm] \lambda [/mm] za(y)b(z)
[mm] \Leftrightarrow -y\frac{b''(z)}{b'(z)}-\lambda\frac{b(z)}{b'(z)}=\lambda\frac{a'(y)}{a(y)} [/mm]

Jetzt habe ich aber das Problem, dass hier auf der linken Seite immer noch ein y vorkommt und nicht die Seiten beide nur von einer Variablen abhängig sind, wie ich das gern beim Separationsansatz hätte.
Ich habe schon einige andere Umformungen probiert, aber komme um dieses Problem nie herum.
Habe ich vorher vielleicht was falsch gemacht oder muss ich anders ansetzen?
Kann mir da wer weiterhelfen?

        
Bezug
Separationsansatz 3 Variablen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 15.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]