www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenSeperationsansat Eigenfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Partielle Differentialgleichungen" - Seperationsansat Eigenfunktion
Seperationsansat Eigenfunktion < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Seperationsansat Eigenfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Di 06.05.2014
Autor: racy90

Hallo

Ich habe ein Verständnisproblem bezüglich der Erstellung der Allgemeinen Lösung mittels Seperationsansatz.

Wenn ich als Angabe habe:

utt=uxx   [mm] ux(0,t)=ux(\pi,t)=0 [/mm]    u(x,0)=0  ut(x,0)=x

Als Eigenfunktion bekomme ich heraus Xn(x)=cos(nx)


Für die 2 charakteristische Gleichung [mm] T''=-\lambda [/mm] *T  schaut das also so aus

[mm] T''=-(n)^2*T [/mm]  
Als Tn(t) hätte ich nun stehen [mm] An*e^{-n^2 t} [/mm]


Nun angenommen meine Eigenfunktion lautet: [mm] sin(\bruch{n \pi}{4}*x) [/mm]

[mm] T''=-(\bruch{n \pi}{4})^2*T [/mm]
Tn(t)= [mm] Ancos(\bruch{n \pi}{4} ct)+Bnsin(\bruch{n \pi}{4} [/mm] ct)

Wieso sind die so grundverschieden obwohl nur ein [mm] \pi/4 [/mm]  dazu kommt?

Oder steckt irgendwo ein Fehler drinne bzw kann man [mm] An*e^{-n^2 t} [/mm] vl auch wie unten schreiben aber warum hat es überhaupt keinen Bn Term?


        
Bezug
Seperationsansat Eigenfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Di 06.05.2014
Autor: MathePower

Hallo racy90,

> Hallo
>  
> Ich habe ein Verständnisproblem bezüglich der Erstellung
> der Allgemeinen Lösung mittels Seperationsansatz.
>  
> Wenn ich als Angabe habe:
>  
> utt=uxx   [mm]ux(0,t)=ux(\pi,t)=0[/mm]    u(x,0)=0  ut(x,0)=x
>  
> Als Eigenfunktion bekomme ich heraus Xn(x)=cos(nx)
>  


[ok]


>
> Für die 2 charakteristische Gleichung [mm]T''=-\lambda[/mm] *T  
> schaut das also so aus
>  
> [mm]T''=-(n)^2*T[/mm]  
> Als Tn(t) hätte ich nun stehen [mm]An*e^{-n^2 t}[/mm]
>  


Diese Lösung passt nicht zur 2. charakteristischen Gleichung.


>
> Nun angenommen meine Eigenfunktion lautet: [mm]sin(\bruch{n \pi}{4}*x)[/mm]
>  
> [mm]T''=-(\bruch{n \pi}{4})^2*T[/mm]
>  Tn(t)= [mm]Ancos(\bruch{n \pi}{4} ct)+Bnsin(\bruch{n \pi}{4}[/mm]
> ct)
>  
> Wieso sind die so grundverschieden obwohl nur ein [mm]\pi/4[/mm]  
> dazu kommt?
>  
> Oder steckt irgendwo ein Fehler drinne bzw kann man
> [mm]An*e^{-n^2 t}[/mm] vl auch wie unten schreiben aber warum hat es
> überhaupt keinen Bn Term?
>  


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]