www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikSequentieller Likelihood Test
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "mathematische Statistik" - Sequentieller Likelihood Test
Sequentieller Likelihood Test < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sequentieller Likelihood Test: Beispiel für einfache Hypoth.
Status: (Frage) beantwortet Status 
Datum: 12:55 Sa 24.11.2007
Autor: AnnaB

Aufgabe
[mm] x_1,x_2,... [/mm] sind unabhängig und identisch verteilt mit [mm] P_p (x_k=1) [/mm] =p und [mm] P_p (x_k=-1) [/mm] =q.
Getestet werden soll H0: [mm] p=p_0 [/mm] gegen H1: [mm] p=p_1, [/mm] wobei [mm] p_0

In dem Beispiel ist der Likelihood Qoutient angegeben als [mm] l_n=(p_1p_0^{-1})^{(n+S_n)/2}(q_1q_0^{-1})^{(n-S_n)/2} [/mm] wobei [mm] S_n= \sum x_k. [/mm]

Wie kommt man darauf?

Der Likelihood Quotient ist definiert als [mm] l_n (x_1,x_2,...x_n)= f_{1n}(x_1,x_2,...,x_n)/f_{0n}(x_1,x_2,...,x_n) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Sequentieller Likelihood Test: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Sa 24.11.2007
Autor: luis52

Moin Anna,


zunaechst erst einmal ein herzliches [willkommenmr]


Es gilt also $ [mm] P_p (x_k=1) [/mm]  =p$ und $ [mm] P_p (x_k=-1) [/mm]  =q=1-p$.

Es stehen zwei Modelle zur Diskussion, eines bei dem [mm] $p=p_0$ [/mm] und eines
bei dem  [mm] $p=p_1$ [/mm] ist mit [mm] $p_0 beobachtet (bestehend aus Zahlen $-1$ und $+1$). Wie gross ist die
Wsk, dass wir diese Werte beobachten? Wenn [mm] $p=p_0$ [/mm] ist, so ist sie

[mm] $f_{0n}(x_1,x_2,...,x_n)=P(X_1=x_1,X_2=x_2,...,X_n=x_n)=p_0^{A}q_0^{-B}$. [/mm]

Dabei ist [mm] $A=\sum_{x_i=1}x_i$ [/mm] die Anzahl der Zahlen $+1$ unter den Werten
[mm] $x_1,...,x_n$ [/mm] und [mm] $-B=-\sum_{x_i=-1}x_i$ [/mm] ist die Anzahl der Zahlen $-1$.


Ist hingegen [mm] $p=p_1$, [/mm] so ist die obige Wsk gegeben durch

[mm] $f_{1n}(x_1,x_2,...,x_n)=P(X_1=x_1,X_2=x_2,...,X_n=x_n)=p_1^{A}q_1^{-B}$. [/mm]

Mithin ist der Likelihood-Quotient gegeben durch

$ [mm] l_n (x_1,x_2,...x_n)=\frac{f_{1n}(x_1,x_2,...,x_n)}{f_{0n}(x_1,x_2,...,x_n)}=(p_1/p_0)^A(q_1/q_0)^{-B}$. [/mm]

Schauen wir nun, ob wir zu deiner Vorgabe kommen. Es ist [mm] $S_n=A+B$ [/mm] und
$n=A-B$. Folglich ist [mm] $A=(n+S_n)/2$ [/mm] und [mm] $-B=(n-S_n)/2$. [/mm] Damit folgt der
Rest.


lg
Luis


Bezug
                
Bezug
Sequentieller Likelihood Test: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:25 So 25.11.2007
Autor: AnnaB

Hallo Luis,

vielen Dank für die schnelle Antwort:)

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]