www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraSequenz von Bidualmoduln
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Sequenz von Bidualmoduln
Sequenz von Bidualmoduln < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sequenz von Bidualmoduln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Mi 30.08.2006
Autor: sonne83

Hallo,

meine Frage betrifft die Exaktheit von Sequenzen von Moduln:
Sei [mm]0\rightarrow M\rightarrow N\rightarrow P\rightarrow 0[/mm] eine exakte Sequenz. Ist dann auch die Sequenz der Bidualmoduln
[mm]0\rightarrow M^{**}\rightarrow N^{**}\rightarrow P^{**}\rightarrow 0[/mm]  exakt?
Mir gelingt es schon nicht, Abbildungen zwischen den Bidualmoduln zu finden. Geht das überhaupt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Viele Grüße
sonne83

        
Bezug
Sequenz von Bidualmoduln: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 Mi 30.08.2006
Autor: felixf

Hallo Sonne!

> meine Frage betrifft die Exaktheit von Sequenzen von
> Moduln:
>  Sei [mm]0\rightarrow M\rightarrow N\rightarrow P\rightarrow 0[/mm]
> eine exakte Sequenz. Ist dann auch die Sequenz der
> Bidualmoduln
>  [mm]0\rightarrow M^{**}\rightarrow N^{**}\rightarrow P^{**}\rightarrow 0[/mm]
>  exakt?
>  Mir gelingt es schon nicht, Abbildungen zwischen den
> Bidualmoduln zu finden. Geht das überhaupt?

Ja, das geht. Sogar auf natuerliche weise :-)
Und zwar ist das Dualisieren ein kontravarianter Funktor (falls dir das was sagt). Soll heissen: Jedem Morphismus $N [mm] \to [/mm] M$ von Moduln wird auf natuerliche weise ein Morphismus [mm] $M^\ast \to N^\ast$ [/mm] zwischen den Bimodulen zugewiesen, wobei sich die Richtung aendert. Und diese Zuweisung erhaelt die Identitaetsabbildung und ist vertraeglich mit Verkettung.

Und wenn du das jetzt zweimal machst, erhaelst du also auf natuerliche Weise eine Abbildung [mm] $N^{\ast\ast} \to M^{\ast\ast}$. [/mm]

Wie das ganze funktioniert? [mm] $N^\ast$ [/mm] ist ja die Menge aller $R$-Modulhomomorphismen [mm] $\varphi [/mm] : N [mm] \to [/mm] R$, und ebenso [mm] $M^\ast [/mm] = Hom(M, R) = [mm] \{ f : M \to R \mid f \text{ Modulmorphismus } \}$. [/mm] Wenn du jetzt aus einem $f [mm] \in [/mm] Hom(M, R)$ ein [mm] $f^\ast \in [/mm] Hom(N, R)$ machen willst, und zwar mit Hilfe von [mm] $\varphi$, [/mm] dann bleibt dir nur eine Wahl: und zwar [mm] $f^\ast [/mm] = f [mm] \circ \varphi [/mm] : N [mm] \to [/mm] R$. also $f = f [mm] \circ \varphi \in N^\ast$. [/mm]

(Das ganze geht uebrigens allgemeiner: Ist $P$ ein beliebiger weiterer Modul, so erhaelst du eine aehnliche Konstruktion, die $f : M [mm] \to [/mm] N$ auf $Hom(f, P) : Hom(N, P) [mm] \to [/mm] Hom(M, P)$, $g [mm] \mapsto [/mm] f [mm] \circ [/mm] g$ abbildet; hierbei ist $Hom(f, P)$ der Name der neuen Abbildung.)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]