www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikSigma-Algebra der Borelmengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Sigma-Algebra der Borelmengen
Sigma-Algebra der Borelmengen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sigma-Algebra der Borelmengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:47 Di 22.11.2005
Autor: junkx

ich habe diese frage in keinem anderen forum gestellt.

hi
ich hab hier eine aufgabe vor mir wobei mir nicht klar ist was ich tun soll (kann auch am schlechten vorlesungsstil meines profs liegen :D)

Man zeige dass die folgenden Mengensysteme die sigma-Algebra der Borelmengen [mm] B(\IR) [/mm] erzeugen:
(a) {(- [mm] \infty, [/mm] x) : x [mm] \in \IR [/mm] }
(b)...

das problem ist das ich zwar mitlerweile so ungefähr verstanden habe was die sigma algebra der borelmengen ist (Mengensystem A wobei komplement, abzählbare vereinigung und abzählbarer schnitt einer Menge aus A wieder in A liegen) aber ich weis nicht wie ich das nachweisen soll

definiert wurde [mm] B(\IR) [/mm] so: {[x,y) [mm] \cap \IR [/mm] : - [mm] \infty \le [/mm] x  [mm] \le [/mm] y  [mm] \le \infty [/mm] }

es würde mir sehr helfen wenn mir jemand wenigstens die ungefähre richtung vorgeben könnte was ich hier tun soll...

danke vielmals

        
Bezug
Sigma-Algebra der Borelmengen: Lösungsansatz, weitere Fragen
Status: (Frage) beantwortet Status 
Datum: 10:52 Di 22.11.2005
Autor: junkx

nach ewigem hin und her überlegen bin ich zu folgendem gekommen:

ich verstehe die aufgabe so, dass ich zeigen soll dass sigma(A) = [mm] B(\IR) [/mm] gilt (wobei A = {I(x) = (- [mm] \infty, [/mm] x) : x [mm] \in \IR [/mm] }) dh. teilmengen beziehungen in beide richtungen sind zu zeigen

es gilt sigma(A) [mm] \subseteq B(\IR) [/mm] denn (- [mm] \infty, [/mm] x) = [a,b) [mm] \cap \IR [/mm] mit x=b und a=- [mm] \infty [/mm] soll heißen alle I(x) lassen sich durch I(a,b) (intervall nach borelmengen definition) darstellen. somit lassen sich auch alle sigma-algebra erzeugnisse von I(x) für beliebige x aus [mm] \IR [/mm] als sigma-erzeugnisse von I(a,b) darstellen.

weiter gilt [mm] B(\IR) \subseteq [/mm] sigma(A) denn [a,b) [mm] \cap \IR [/mm] = (- [mm] \infty, [/mm] b) - (- [mm] \infty, [/mm] a) = (- [mm] \infty, [/mm] b) [mm] \cap [/mm] Komlement( (- [mm] \infty, [/mm] a) ). soll heißen jedes Intervall I(a,b) lässt sich als Schnitt von Intervallen I(x) darstellen. somit sind auch alle sigma-erzeugnisse (aus [mm] B(\IR)) [/mm] in sigma(A) enthalten.

stimmt das so? oder verlangt die aufgabe noch mehr?!

ferner stellt sich nun die frage nach aufgabe b:
{(- [mm] \infty, [/mm] x) : x [mm] \in \IQ [/mm] }
dafür funktioniert ja obige argumentation nicht mehr weil ja [mm] B(\IR) [/mm] noch mehr beinhaltet oder?!

danke im vorraus

Bezug
                
Bezug
Sigma-Algebra der Borelmengen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:32 Di 22.11.2005
Autor: banachella

Hallo!

> ich verstehe die aufgabe so, dass ich zeigen soll dass
> sigma(A) = [mm]B(\IR)[/mm] gilt (wobei $A = [mm] \{I(x) = (-\infty, x) : x $ > $\in \IR \}$) [/mm] dh. teilmengen beziehungen in beide richtungen
> sind zu zeigen

Das ist im wesentlichen der richtige Ansatz: Zu zeigen ist, dass [mm] $A\subseteq \mathcal{B}(\IR)$, [/mm] sowie dass ein Erzeugendensystem $B$ von [mm] $\mathcal{B}(\IR)$ [/mm] in [mm] $\sigma(A)$. [/mm]

> es gilt sigma(A) [mm]\subseteq B(\IR)[/mm] denn (- [mm]\infty,[/mm] x) =
> [a,b) [mm]\cap \IR[/mm] mit x=b und a=- [mm]\infty[/mm] soll heißen alle I(x)
> lassen sich durch I(a,b) (intervall nach borelmengen
> definition) darstellen. somit lassen sich auch alle
> sigma-algebra erzeugnisse von I(x) für beliebige x aus [mm]\IR[/mm]
> als sigma-erzeugnisse von I(a,b) darstellen.

[daumenhoch]
  

> weiter gilt [mm]B(\IR) \subseteq[/mm] sigma(A) denn [a,b) [mm]\cap \IR[/mm] =
> (- [mm]\infty,[/mm] b) - (- [mm]\infty,[/mm] a) = (- [mm]\infty,[/mm] b) [mm]\cap[/mm]
> Komlement( (- [mm]\infty,[/mm] a) ). soll heißen jedes Intervall
> I(a,b) lässt sich als Schnitt von Intervallen I(x)
> darstellen. somit sind auch alle sigma-erzeugnisse (aus
> [mm]B(\IR))[/mm] in sigma(A) enthalten.

[daumenhoch] So ist es!
  

> stimmt das so? oder verlangt die aufgabe noch mehr?!

Ich denke, dass das ausreicht.

> ferner stellt sich nun die frage nach aufgabe b:
>  [mm] $\{(- \infty,x) : x \in \IQ\}$ [/mm]
>  dafür funktioniert ja obige argumentation nicht mehr weil
> ja [mm]B(\IR)[/mm] noch mehr beinhaltet oder?!

Hierbei solltest du bedenken, dass es für jedes [mm] $x\in\IR$ [/mm] eine Folge [mm] $\big(x_n\big)_{n\in\IN}$ [/mm] in [mm] $\IQ$ [/mm] gibt mit [mm] $x_n\le x_{n+1}$ [/mm] und [mm] $x_n\to [/mm] x$...

Gruß, banachella


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]