www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikSigma-Algebren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Sigma-Algebren
Sigma-Algebren < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sigma-Algebren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:30 Sa 26.04.2008
Autor: Gero

Aufgabe
A [mm] \subset \IR [/mm] offen [mm] \gdw \forall [/mm] x [mm] \in [/mm] A [mm] \exists [/mm] n [mm] \in \IN: [/mm] (x- [mm] \bruch{1}{n}, [/mm] x+ [mm] \bruch{1}{n}) \subseteq [/mm] A. Sei O:= [mm] \{A \subseteq \IR | \mbox{A offen in} \IR \} [/mm] Topologie auf [mm] \IR [/mm] und Sigma(O):= [mm] \bigcap_{F \subseteq O, F ist Sigma-Algebra}^{} [/mm] F die kleinste Sigma-Algebra auf [mm] \IR, [/mm] die O als Teilmenge enthält.
a.) Zeige, dass sich jede offene Menge in [mm] \IR [/mm] als abzählbare Vereinigung von offenen Intervallen schreiben lässt.
b.) Zeige mit a.), dass Sigma(O)= [mm] Sigma(O_1), [/mm] wobei [mm] O_1:=\{(a,b)| - \infty \le a

So, hallo an alle,

zur Zeit hab ich´s mit den Sigma-Algebren. *g*
Aber ich find das immer ziemlich schwer mir sowas vorzustellen und hab deshalb keine Ahnung, wie ich da anfangen soll. Vorallem bei der b.) nicht. Bei der a.) bin ich noch dran, dass könnt ich vielleicht noch hinbekommen. Kann mir vielleicht jemand helfen?
Danke schonmal im voraus!

        
Bezug
Sigma-Algebren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 So 27.04.2008
Autor: generation...x

Aufgabe b) ergibt sich direkt aus a): [mm] \sigma(O_1) [/mm] enthält alle offenen Intervalle und - als [mm] \sigma [/mm] -Algebra - damit auch deren abzählbaren Vereinigungen. Mit a) wurde gezeigt, dass sie damit auch alle offenen Mengen enthalten muss, weshalb sie also alle Mengen umfassen muss, die in  [mm] \sigma(O) [/mm] liegen. Andererseits umfasst  [mm] \sigma(O) [/mm] alle Mengen die in  [mm] \sigma(O_1) [/mm] liegen (warum?), also sind sie gleich.

Bezug
                
Bezug
Sigma-Algebren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:17 Di 29.04.2008
Autor: Gero

Also, erstmal ne Frage zu a.) wenn ich die Definiton von oben benutze, muss für ein Element x aus A [mm] \in [/mm] O gelten (x-1/n, x+1/n) [mm] \in [/mm] A [mm] \forall [/mm] n [mm] \in \IN. [/mm] Wenn ich jetzt über alle Intervalle (x-1/n, x+1/n) vereinige, liegt die offene Menge wieder drin. Ist a.) damit schon bewiesen?

OK, bei b.) folgt Inklusion [mm] Sigma(O_1) \subset [/mm] Sigma(O) direkt aus a.) und bei Sigma(O) [mm] \subset Sigma(O_1) [/mm] gilt, dass man ein großes n wählt, so dass ein x [mm] \in [/mm] A mit der Umgebung (x-1/n, x+1/n) [mm] \subseteq [/mm] A auch in jedem Intervall enthalten ist. Kann das so sein?
Vielen Dank schonmal im voraus!

Bezug
                        
Bezug
Sigma-Algebren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Do 01.05.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]