www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Signifikanztest
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Statistik (Anwendungen)" - Signifikanztest
Signifikanztest < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Signifikanztest: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 So 06.06.2010
Autor: ganzir

Aufgabe
Eine Studentin stellt die Hypothese auf, dass 30% der Studierenden an der Uni RaucherInnen sind. Sie zieht eine Zufallsstichprobe vom Umfang n= 10. In der Stichprobe befinden sich 5 RaucherInnen. Testet mit einem Signifikanzniveau von 5%, ob die Hypothese bestätigt oder verworfen werden muss.

In der Vorlesung hatte ich nur das Beispiel, dass der Wert der Stichprobe niedriger ist als der Wert der Hypothese.

z.B.

Ich stelle die Behauptung auf ein einer Gruppe befinden sich 40% Männer mache eine Stichprobe mit 10 Leuten und stelle fest es sind 2 Männer darunter.

Nun berechne ich mit Hilfe der Formel
P(x) = [mm] \vektor{n \\ x} [/mm] * [mm] \pi^{x} [/mm] * [mm] (1-\pi)^{n-x} [/mm]

Die Wahrscheinlichkeiten von 2 1 und 0 Männern in der Stichprobe und addiere diese Wahrscheinlichkeiten.

Ich erhalte einen Wert von etwas über 16% liegt dieser höher als mein Signifikanzniveau, so muss die Hypothese nicht verworfen werden.

In obiger Aufgabe sind in der Stichprobe nun aber mehr "günstige Ereignisse" als von der Hypothese postuliert, meine Frage daher, welche Wahrscheinlichkeiten muss ich nun zusammenrechnen und mit dem Signifikanzniveau vergleichen?

        
Bezug
Signifikanztest: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 So 06.06.2010
Autor: steppenhahn

Hallo,

> Eine Studentin stellt die Hypothese auf, dass 30% der
> Studierenden an der Uni RaucherInnen sind. Sie zieht eine
> Zufallsstichprobe vom Umfang n= 10. In der Stichprobe
> befinden sich 5 RaucherInnen. Testet mit einem
> Signifikanzniveau von 5%, ob die Hypothese bestätigt oder
> verworfen werden muss.
>  In der Vorlesung hatte ich nur das Beispiel, dass der Wert
> der Stichprobe niedriger ist als der Wert der Hypothese.

Korrekterweise müsstest du hier eigentlich einen beidseitigen Signifikanztest durchführen, weil ja nicht angegeben ist, ob die Alternativhypothese "mehr" Raucher oder "weniger" Raucher als 30% vermutet.

Man sieht ja aber, dass die Stichprobe wesentlich über der der Hypothese liegt, deswegen reicht ein rechtsseitiger Signifikanztest.

Zugrunde liegt eine Binomialverteilung X mit n = 10 und p = 0.3.

Dazu musst du zunächst das kleinste M berechnen, für das noch gilt:

P(X [mm] \le [/mm] M) = [mm] \sum_{k=0}^{M}P(X=k) [/mm] > 0.95 = 1-Signifikanzniveau.

Der Bereich [0,...,M] ist dann der Annahmebereich deiner Hypothese, das heißt, die Stichprobe bestätigt die Hypothese, wenn 5 [mm] \in [/mm] [0,...,M].


Grüße,
Stefan

Bezug
                
Bezug
Signifikanztest: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:41 So 06.06.2010
Autor: ganzir

P(X $ [mm] \le [/mm] $ M) = $ [mm] \sum_{k=0}^{M}P(X=k) [/mm] $ > 0.95 = 1-Signifikanzniveau.

bedeutet das ich setze in die Formel

P(x) = $ [mm] \vektor{n \\ x} [/mm] $ * $ [mm] \pi^{x} [/mm] $ * $ [mm] (1-\pi)^{n-x} [/mm] $

für x 1 .... 5 ein und addiere die Ergebnisse und vergleiche diese dann mit dem Signifikanzniveau?



Bezug
                        
Bezug
Signifikanztest: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 So 06.06.2010
Autor: steppenhahn

Hallo,

> P(X [mm]\le[/mm] M) = [mm]\sum_{k=0}^{M}P(X=k)[/mm] > 0.95 =
> 1-Signifikanzniveau.
>
> bedeutet das ich setze in die Formel
>  
> P(x) = [mm]\vektor{n \\ x}[/mm] * [mm]\pi^{x}[/mm] * [mm](1-\pi)^{n-x}[/mm]
>
> für x 1 .... 5 ein und addiere die Ergebnisse und
> vergleiche diese dann mit dem Signifikanzniveau?

Man "vergleicht" üblicherweise nicht mit dem Signifikanzniveau, sondern das Signifikanzniveau gibt eine Schranke vor, die uns eindeutig den Ablehnbereich und Annahmebereich einer Hypothese berechnen lässt. Auf Basis dieser Bereiche können wir dann zu jeder Stichprobe sofort sagen, ob sie die Hypothese unterstützt oder ablehnt. Man muss also nicht mehr Rechnen, wenn man einmal die Ablehn- und Annahmebereiche berechnet hat!

Im Klartext: Du hast das Signifikanzniveau gegeben, und berechnest auf Basis dieses Signifikanzniveaus mit der Formel

P(X [mm]\le[/mm] M) = [mm]\sum_{k=0}^{M}P(X=k)[/mm] > 0.95 = 1-Signifikanzniveau.

das kleinste M, für das die Formel noch erfüllt ist.
Dadurch erhältst du einen Annahmebereich [0,...,M] für deine Hypothese, und einen Ablehnbereich [M+1,...,10]  für deine Hypothese.

Nun schaust du, ob dein Stichprobenergebnis "5" im Annahmebereich oder im Ablehnbereich liegt.


Grüße,
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]