www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik/HypothesentestsSignifikanztest
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Statistik/Hypothesentests" - Signifikanztest
Signifikanztest < Statistik/Hypothesen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Signifikanztest: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:58 Di 21.02.2012
Autor: JoeSunnex

Aufgabe
Ber der Auswertung der letzten Bundeswettbewerbe stellte man fest, dass gleich bleibend 10% der Teilnehmer mit dem PKW angereist waren und damit die zur Verfügung gestellten Parkplätze ausreichten.
Der Veranstalter erwartet, dass er für den nächsten Bundeswettbewerb mehr Parkplätze zur Verfügung stellen muss. Zur Festellung des Bedarfs an Parkplätzen befragt er 150 repräsentativ ausgewählte mögliche Endausscheidungsteilnehmer und testet mit der Nullhypothese "keine weiteren Parkplätze erforderlich" auf dem Signifikanzniveau 1%. Beschreiben Sie die möglichen Fehlentscheidungen beim Testen der Hypothese.

Die Wahrscheinlichkeit eines Fehlers 2. Art läst sich für alle Wahrscheinlichkeitswerte p berechnen, die von den Wahrscheinlichkeitswerten der Prüfhypothese [mm] H_0 [/mm] abweichen und in einer Operationscharakteristik darstellen. Erläutern Sie den in Abb 1 dargestellten Zusammenhang und erklären Sie ohne Rechnung die Bedeutung des Punktes (0,2 | 0,13) auf der Kurve.

Abb 1: [][Externes Bild http://www.abload.de/img/abb1e1l5m.jpg]



Hallo zusammen,

die Aufgabe entnommen aus dem Abitur von 2009 (C1) erweist sich mir als ziemlich kompliziert.

Meine Lösungsvorschläge:

I.)

[mm] H_0 [/mm] : p [mm] \le [/mm] 0,1 => Parkplätze reichen aus
[mm] H_1 [/mm] : p > 0,1 => weitere Parkplätze nötig

Fehler 1. Art: Wir glauben, dass mehr Parkplätze nötig sind, obwohl die derzeitigen ausreichen.

[mm] $p_{H0}(Entscheidung [/mm] für [mm] H_1)= [/mm] p(X > K) [mm] \le [/mm] 0,01
=> 1 - p(X [mm] \le [/mm] K) [mm] \le [/mm] 0,01 => p(X [mm] \le [/mm] K) [mm] \ge [/mm] 0,99 => [mm] \Phi\left(\frac{K - 14,5}{3,674}\right) \ge [/mm] 0,99 => [mm] \frac{K - 14,5}{3,674} \ge [/mm] 2,33
=> K [mm] \ge [/mm] 23,06 => K muss min. 24 sein, damit die Nullhypothese verworfen wird.

Fehler 2. Art: Wir glauben, dass keine weiteren Parkplätze nötig sind, obwohl weitere erforderlich sind.

[mm] $p_{H1}(Entscheidung [/mm] für [mm] H_0)= [/mm] p(X [mm] \le [/mm] 23)

p ist hier variabel

II.)

In Abb. 1 werden verschiedenen Wahrscheinlichkeiten für die Gegenhypothese [mm] H_1 [/mm] die zugehörigen Wahrscheinlichkeitswerte für den Fehler 2. Art zugeordnet.

Wenn wir eine Gegenhypothese mit Wahrscheinlichkeit p = 0,2 annehmen, so ist die Irrtumswahrscheinlichkeit, dass wir glauben, dass keine weiteren Parkplätze nötig sind, obwohl weitere erforderlich sind, gleich 0,13 bzw. 13%.
----------------------------------------------------------
Reicht für diese Aufgaben aus und sind diese Lösungen eurer Meinung nach richtig?

Würde mich über Feedback freuen.

Grüße

Joe






        
Bezug
Signifikanztest: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Fr 24.02.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]