www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenOperations ResearchSimplexfehler
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Operations Research" - Simplexfehler
Simplexfehler < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Simplexfehler: Korrektur
Status: (Frage) überfällig Status 
Datum: 11:26 So 23.06.2013
Autor: Klerk91

Ich will folgendes lineares Programm mit dem Simplexalgo lösen
Wir haben [mm] $(x_1,x_2,s_1,s_2,s_3)\ge [/mm] 0$  mit
[mm] $\begin{pmatrix} -2 & 1 & 1& 0&0 \\ 1 &2&0&1&0 \\ 4 &3 &0&0&1 \\ \end{pmatrix}(x_1,x_2,s_1,s_2,s_3)^T=\begin{pmatrix} 2 \\14 \\36 \end{pmatrix}$ [/mm]
und möchten minimieren: $ [mm] \text{min}_{x \in \mathbb{R}^5} [/mm] (-1,-1,0,0,0)x $
(Schlupfvariablen sind die s-Variablen)

Habe folgendes getan:
Mein Startbasisvektor ist $J=(3,4,5)$

Daher 1.) [mm] $\bar{A}_J=A^{-1}_J [/mm] A= [mm] \begin{pmatrix} 1 &0&0 \\0&1&0 \\0&0&1 \end{pmatrix}\begin{pmatrix} -2 & 1 & 1& 0&0 \\ 1 &2&0&1&0 \\ 4 &3 &0&0&1 \\ \end{pmatrix}=A$ [/mm]
und
[mm] $\bar{b}_J=A^{-1}_Jb=\begin{pmatrix} 2 \\14 \\36 \end{pmatrix}$. [/mm]
Daher [mm] $x=\begin{pmatrix}0\\0\\ 2 \\ 14 \\36 \end{pmatrix}$ [/mm]
2.) [mm] $\bar{c}^T=c^T-c^T_J\bar{A}_{J}=(-1,-1,0,0,0)-(0,0,0)\bar{A}_{J}=(-1,-1,0,0,0)$ [/mm]
3.) Man wähle also eine negative Komponente z.B.  s=1, mit zugehörigem [mm] $y_k=(e_s)_k=\begin{pmatrix} 0 \\1 \end{pmatrix}$, $y_J=-\bar{A}_Je_s=\begin{pmatrix}2\\-1\\-4 \end{pmatrix}$ [/mm]
4.) Wählen wir unsere neue Basis so, dass sie immer noch positiv und damit zulässig ist: [mm] $x_new=x+9y=\begin{pmatrix} 0\\0\\2\\14\\36 \end{pmatrix} [/mm] + 9 [mm] \begin{pmatrix} 1\\0\\2\\-1\\-4 \end{pmatrix}=\begin{pmatrix} 9 \\0 \\20 \\5\\0 \end{pmatrix} [/mm] $
Die gehört also nun zu: [mm] $J_{new}=\begin{pmatrix} 3 \\1 \\5 \end{pmatrix}$(neuer [/mm] Basisvektor).

Also rechne ich die Matrixtrafo aus: $ [mm] \bar{A}_{Jnew}=\begin{pmatrix} 1 &-2&0 \\0&1&0 \\0&4&1 \end{pmatrix}^{-1}\begin{pmatrix} -2 & 1 & 1& 0&0 \\ 1 &2&0&1&0 \\ 4 &3 &0&0&1 \\ \end{pmatrix}=\begin{pmatrix} 0&5&1&2&0 \\ 1&2&0&1&0 \\ 0 &-5&0&-4&0 \\\end{pmatrix}$ [/mm]

Der Fehler taucht nun beim berechnen von [mm] $\bar{c}^T$ [/mm]  bezüglich der neuen Basis auf
[mm] $\bar{c}^T=c^T-c^T_{Jnew}\bar{A}_{Jnew}=(-1,-1,0,0,0)-(0,-1,0)\bar{A}_{Jnew}=(0,1,0,1,0)$ [/mm]
Da ist alles positiv, d.h. wir wären eig. fertig, da ich aber das ganze vorher mit einem Programm getest habe, weiß ich, dass 6 und 4 die richtige lösung ist und nicht das was ich da habe. Irgendwo liegt also ein Fehler!

        
Bezug
Simplexfehler: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Di 25.06.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]