Singulärwertzerlegung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Bestimmen Sie die Singulärwertzerlegung von
[mm] A=\pmat{ 1 & 1 \\ -1 & 1 \\ 1 & 1} \in \IR^{3x2} [/mm] |
Ist das bisher so richtig?
[mm] A^{T}*A= \pmat{ 1 & -1 & 1 \\ 1 & 1 & 1 }* \pmat{ 1 & 1 \\ -1 & 1 \\ 1 & 1}=\pmat{ 3 & 1 \\ 1 & 3 }=:B
[/mm]
Bestimmung der Eigenwerte:
[mm] p(t)=\pmat{ 3-\lambda & 1 \\ 1 & 3-\lambda }= \lambda^{2}-6\lambda+8=(\lambda-4)(\lambda-2). [/mm]
=>EW sind also: [mm] \lambda_{1}=4 [/mm] und [mm] \lambda_{2}=2
[/mm]
Bestimmung der Eigenvektoren:
[mm] (A-\lambda_{i}*E)*x_{i}=0 \forall [/mm] i [mm] \in [/mm] {1,2}
Einsetzen ergibt [mm] \overrightarrow{v}_{1}=\vektor{ \lambda \\ \lambda} \wedge \overrightarrow{v}_{2}=\vektor{ -\lambda \\ \lambda}
[/mm]
Also die Singulärwerte sind:
[mm] G_{1}=\wurzel{4} \wedge G_{2}=\wurzel{2}
[/mm]
Nun Bestimme ich das ONS:
[mm] \overrightarrow{w}_{1}=1/G_{1}*A* \overrightarrow{v}_{1} \wedge \overrightarrow{w}_{2}=1/G_{2}*A* \overrightarrow{v}_{2}. [/mm]
Einsetzen ergiebt:
[mm] \overrightarrow{w}_{1}=\vektor{\lambda \\ 0 \\ \lambda} \wedge \overrightarrow{w}_{1}=\vektor{0 \\ \wurzel{2}\lambda \\ 0}
[/mm]
Ergänzen zu ONB mittels Gramm-Schmidt:
Sei [mm] u_{1}=\vektor{\lambda \\ 0 \\ \lambda} [/mm] und [mm] u_{2}=\vektor{0 \\ \wurzel{2}\lambda \\ 0}. [/mm] Wähle ein linear unabhängigen Vektor [mm] v_{3} e_{2}, [/mm] sodass gilt:
[mm] u_{3}= \vektor{0 \\ 1 \\ 0}-<\vektor{0 \\ 1 \\ 0},\vektor{0 \\ \wurzel{2}\lambda \\ 0}>*\vektor{0 \\ \wurzel{2}\lambda \\ 0}-<\vektor{0 \\ 1 \\ 0},\vektor{\lambda \\ 0 \\ \lambda}>*\vektor{\lambda \\ 0 \\ \lambda}=\vektor{0 \\ 1 \\ 0}-\wurzel{2}\lambda*\vektor{0 \\ \wurzel{2}\lambda \\ 0}=\vektor{0 \\ 1 \\ 0}-\vektor{0 \\ 2*\lambda^{2} \\ 0}=\vektor{0 \\ -2\lambda^{2}+1 \\ 0}
[/mm]
[mm] \overrightarrow{u_3}=\bruch{1}{\wurzel{(-2\lambda+1)^{2}}}\vektor{0 \\ 2\lambda^{2}+1 \\ 0}=\vektor{0 \\ \bruch{(-2\lambda+1)}{\wurzel{(-2\lambda+1)^{2}}} \\ 0}
[/mm]
Weiter weiß ich leider nicht! Vielleicht kann mir das jemand von euch erklären?!
LG DerPinguinagent
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:00 So 12.06.2016 | Autor: | hippias |
> Bestimmen Sie die Singulärwertzerlegung von
>
> [mm]A=\pmat{ 1 & 1 \\ -1 & 1 \\ 1 & 1} \in \IR^{3x2}[/mm]
>
> Ist das bisher so richtig?
>
> [mm]A^{T}*A= \pmat{ 1 & -1 & 1 \\ 1 & 1 & 1 }* \pmat{ 1 & 1 \\ -1 & 1 \\ 1 & 1}=\pmat{ 3 & 1 \\ 1 & 3 }=:B[/mm]
>
> Bestimmung der Eigenwerte:
>
> [mm]p(t)=\pmat{ 3-\lambda & 1 \\ 1 & 3-\lambda }= \lambda^{2}-6\lambda+8=(\lambda-4)(\lambda-2).[/mm]
>
>
> =>EW sind also: [mm]\lambda_{1}=4[/mm] und [mm]\lambda_{2}=2[/mm]
>
> Bestimmung der Eigenvektoren:
>
> [mm](A-\lambda_{i}*E)*x_{i}=0 \forall[/mm] i [mm]\in[/mm] {1,2}
>
> Einsetzen ergibt [mm]\overrightarrow{v}_{1}=\vektor{ \lambda \\ \lambda} \wedge \overrightarrow{v}_{2}=\vektor{ -\lambda \\ \lambda}[/mm]
>
Gibt es einen guten Grund, weshalb Du die EV so schreibst? Weshalb nicht [mm] $\overrightarrow{v}_{1}=\vektor{ 1 \\ 1}$ [/mm] und $ [mm] \overrightarrow{v}_{2}=\vektor{ -1 \\ 1}$?
[/mm]
> Also die Singulärwerte sind:
>
> [mm]G_{1}=\wurzel{4} \wedge G_{2}=\wurzel{2}[/mm]
>
> Nun Bestimme ich das ONS:
>
> [mm]\overrightarrow{w}_{1}=1/G_{1}*A* \overrightarrow{v}_{1} \wedge \overrightarrow{w}_{2}=1/G_{2}*A* \overrightarrow{v}_{2}.[/mm]
>
> Einsetzen ergiebt:
>
> [mm]\overrightarrow{w}_{1}=\vektor{\lambda \\ 0 \\ \lambda} \wedge \overrightarrow{w}_{1}=\vektor{0 \\ \wurzel{2}\lambda \\ 0}[/mm]
>
> Ergänzen zu ONB mittels Gramm-Schmidt:
>
> Sei [mm]u_{1}=\vektor{\lambda \\ 0 \\ \lambda}[/mm] und
> [mm]u_{2}=\vektor{0 \\ \wurzel{2}\lambda \\ 0}.[/mm] Wähle ein
> linear unabhängigen Vektor [mm]v_{3} e_{2},[/mm] sodass gilt:
>
> [mm]u_{3}= \vektor{0 \\ 1 \\ 0}-<\vektor{0 \\ 1 \\ 0},\vektor{0 \\ \wurzel{2}\lambda \\ 0}>*\vektor{0 \\ \wurzel{2}\lambda \\ 0}-<\vektor{0 \\ 1 \\ 0},\vektor{\lambda \\ 0 \\ \lambda}>*\vektor{\lambda \\ 0 \\ \lambda}=\vektor{0 \\ 1 \\ 0}-\wurzel{2}\lambda*\vektor{0 \\ \wurzel{2}\lambda \\ 0}=\vektor{0 \\ 1 \\ 0}-\vektor{0 \\ 2*\lambda^{2} \\ 0}=\vektor{0 \\ -2\lambda^{2}+1 \\ 0}[/mm]
>
> [mm]\overrightarrow{u_3}=\bruch{1}{\wurzel{(-2\lambda+1)^{2}}}\vektor{0 \\ 2\lambda^{2}+1 \\ 0}=\vektor{0 \\ \bruch{(-2\lambda+1)}{\wurzel{(-2\lambda+1)^{2}}} \\ 0}[/mm]
>
Seien [mm] $u_{1}=\vektor{1 \\ 0 \\ 1}$ [/mm] und
[mm] $u_{2}=\vektor{0 \\ \wurzel{2}\\ 0}$. [/mm] Offensichtlich ist [mm] $u_{3}= \vektor{1\\0\\-1}$ [/mm] orthogonal zu [mm] $u_{1}$ [/mm] und [mm] $u_{2}$. [/mm] Nun kannst Du noch normieren, wenn Du willst.
> Weiter weiß ich leider nicht! Vielleicht kann mir das
> jemand von euch erklären?!
>
> LG DerPinguinagent
|
|
|
|
|
Für die Matrix U habe ich [mm] U=\pmat{ 1 & 0 & 0 \\ 0 & \wurzel{2} & -1 \\ 1 & 0 & 0 } [/mm] und für [mm] S=\pmat{ \wurzel{4} & 0 \\ 0 & \wurzel{2} \\ 0 & 0 } [/mm] raus. Wie bekomme ich die Matrix V raus, damit [mm] A=USV^{T} [/mm] gilt.
Vielen Dank im Voraus!
LG DerPinguinagent
PS: Bei den Eigenvektoren habe ich für [mm] \lambda=1 [/mm] eingesetzt
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:20 Di 14.06.2016 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|