www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisSingularitäten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Singularitäten
Singularitäten < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Singularitäten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Di 29.05.2012
Autor: mathe456

Hallo,
ich bräuchte bei folgender Aufagbe Hilfe:

Aufgabe
Es sei [mm] $U\subset\IC$ [/mm]  offen, [mm] $z_{0} \in [/mm] U$ und [mm] $f\in H(U\setminus\{ z_{0} \})$. [/mm]
Zeigen Sie:
(a) Die Abbildung [mm] $\exp \circ [/mm] f$ kann in [mm] $z_{0}$ [/mm] keinen Pol haben.
(b) Die Singularität von $f$ in [mm] $z_{0}$ [/mm] ist hebbar, falls [mm] $\mathrm{Re} [/mm] f$ in einer Umgebung von [mm] $z_{0}$ [/mm] nach oben oder unten beschränkt ist.



Danke schonmal!

        
Bezug
Singularitäten: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Mi 30.05.2012
Autor: fred97

Zu a). Nimm mal an, [mm] $e^{f(z)}$ [/mm] hätte in [mm] z_0 [/mm] einen Pol der Ordnung m [mm] \ge [/mm] 1.

Dann gibt es eine Umgebung V [mm] \subset [/mm] U von [mm] z_0 [/mm] und eine auf V holomorphe Funktion g mit:

                  [mm] e^{f(z)}= \bruch{g(z)}{(z-z_0)^m} [/mm] für z [mm] \in [/mm] V [mm] \setminus \{ z_0 \} [/mm]  und [mm] g(z_0) \ne [/mm] 0.

Kann das sein ?

Zu b) Sei Re(f) nach oben beschränkt, es gibt also ein c [mm] \in \IR [/mm] mit

                    Re(f(z)) [mm] \le [/mm] c  für alle z [mm] \in [/mm] U.

Wir nehmen an, dass f in [mm] z_0 [/mm] eine wesentliche Sing. besitze. Nach Casorati- Weierstraß gibt es eine Folgw [mm] (z_n) [/mm] in U [mm] \setminus \{ z_{0} \} [/mm] mit:

                 [mm] f(z_n) \to [/mm] c+1.

Kann das sein ?

Jetzt versuche Du mal zu zeigen: f hat in [mm] z_0 [/mm] keinen Pol.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]