www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisSinus und Cosinus
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Sinus und Cosinus
Sinus und Cosinus < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sinus und Cosinus: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:08 Do 27.04.2006
Autor: Doreen

Aufgabe
Zeige für [mm] \alpha \in \IR: [/mm]

sin2 [mm] \alpha [/mm] = 2sin [mm] \alpha [/mm] * cos [mm] \alpha [/mm]  

Guten Morgen.

Da bin ich wieder und brauch gleich Hilfe.

Ich bin ja der Meinung, dass man die obige Aufgabe durch
Induktion beweisen kann. Aber da stockt es dann...

Induktionsanfang:  [mm] \alpha [/mm] = 1

LS:  sin 2*1 = 1

RS: 2 sin 1 * cos 1 = 1   somit ist es erfüllt

Induktionsschritt:  [mm] \alpha [/mm]  => [mm] \alpha [/mm]  + 1

sin 2 [mm] \alpha [/mm]  + sin 2 [mm] (\alpha [/mm] +1) = Induktionsvoraussetzung =

2sin [mm] \alpha [/mm] * cos [mm] \alpha [/mm] + sin 2 [mm] (\alpha [/mm] +1) ...

Leider bin ich mir überhaupt nicht sicher, ob man das über Induktion so macht, so wie ich es angefangen hab. Und an der Stelle "..." weiß ich nicht weiter.

Ich hoffe, mir kann jemand da weiter helfen und mir sagen, ob es soweit richtig ist und wenn ja, wie ich weiter machen muss.

Vielen lieben Dank im Voraus

Doreen

Diese Frage habe ich in keinem anderen Forum gestellt.

        
Bezug
Sinus und Cosinus: Antwort
Status: (Antwort) fertig Status 
Datum: 08:15 Do 27.04.2006
Autor: DaMenge

Hallo Doreen,

leider kann man die Aufgabe nicht über Induktion lösen, denn diese macht nur  Aussagen zu (einer Teilmenge der) natürlichen Zahlen, also man kann per Induktion höchstens solche Aufagen lösen wie :"Zeige für alle [mm] $n\in\IN$ [/mm] mit [mm] $n\ge n_0$ [/mm] dass ..."

dein Alpha ist aber aus [mm] $\IR$, [/mm] du kannst nicht einfach von Alpha auf (alpha+1) schließen, denn dazwischen sind ja noch (unendlich viele) andere Werte, die es zu betrachten gilt.

Du musst die Aufgabe vielmehr mit dem Wissen über die trigonometrischen Funktionen lösen, das du schon hast (evtl. durch vorherige Aufgaben?)

also [mm] $\sin(2*\alpha)=\sin(\alpha +\alpha)$ [/mm] und dann könnte man versuchen mit den Additionstheoremen die Aussage zu beweisen.

Was habt ihr also schon für Formeln kennen gelernt? Was darf verwendet werden?

viele Grüße
DaMenge

Bezug
                
Bezug
Sinus und Cosinus: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 09:34 Do 27.04.2006
Autor: Doreen

Also erstmal vielen Dank,
da war ich wohl ganz auf dem Holzweg.

Das ist die erste Aufgabe zu dem Thema und mein Wissen liegt mindestens 9 Jahre zurück...

Wenn ich dich richtig verstanden hab, dann schaut das ganz wie folgt aus:

sin2 [mm] \alpha [/mm] = sin [mm] (\alpha [/mm] + [mm] \alpha) [/mm]

mit Additionstheorem folgt

[mm] sin\alpha [/mm] * [mm] cos\alpha [/mm] + [mm] sin\alpha [/mm] * [mm] cos\alpha [/mm] = [mm] 2*sin\alpha [/mm] * [mm] cos\alpha [/mm]

und somit als bewiesen gilt.

Für Antwort vielen Dank im Voraus

Gruß Doreen

Bezug
                        
Bezug
Sinus und Cosinus: Antwort
Status: (Antwort) fertig Status 
Datum: 09:41 Do 27.04.2006
Autor: DaMenge

Hallo nochmal,

also wenn du die Additionstheoreme verwenden darfst, dann ist das richtig, aber das scheint mir doch ein wenig zu einfach (die Aufgabe hat dann keinen tieferen Sinn) - schau mal lieber nochmal in deiner Mitschrift nach oder so, was ihr überhaupt dazu hattet und ob ihr das auch evtl anders (aber komplizierter) beweisen könntet, wenn ihr die Additionstheoreme noch nicht hattet.

viele Grüße
DaMenge

Bezug
                                
Bezug
Sinus und Cosinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:51 Do 27.04.2006
Autor: Doreen

Warum kann es nicht so einfach sein?

Also wir haben den Beweis der Sinusfunktion erbracht
im Zusammenhang mit [mm] \pi [/mm]

sin [mm] \alpha [/mm] = sin( [mm] \bruch{\pi}{2} [/mm] + [mm] \bruch{\pi}{2}) [/mm] = sin [mm] \bruch{\pi}{2} [/mm] * cos [mm] \bruch{\pi}{2} [/mm] + cos [mm] \bruch{\pi}{2} [/mm] * sin [mm] \bruch{\pi}{2} [/mm] = 2 sin [mm] \bruch{\pi}{2} [/mm] * cos [mm] \bruch{\pi}{2} [/mm]

so und mit dem kann ich das auf meine Aufgabe anwenden.

Einfach schlussfolgern.

Was anderes habe ich nicht dazu im Skript.

Müsste doch dann theoretisch passen und langen?

Gruß Doreen

Bezug
                                        
Bezug
Sinus und Cosinus: Wikipedia
Status: (Antwort) fertig Status 
Datum: 10:22 Do 27.04.2006
Autor: informix

Hallo Doreen,
> Warum kann es nicht so einfach sein?
>  
> Also wir haben den Beweis der Sinusfunktion erbracht
>  im Zusammenhang mit [mm]\pi[/mm]
>  
> sin [mm]\alpha[/mm] = sin( [mm]\bruch{\pi}{2}[/mm] + [mm]\bruch{\pi}{2})[/mm] = sin
> [mm]\bruch{\pi}{2}[/mm] * cos [mm]\bruch{\pi}{2}[/mm] + cos [mm]\bruch{\pi}{2}[/mm] *
> sin [mm]\bruch{\pi}{2}[/mm] = 2 sin [mm]\bruch{\pi}{2}[/mm] * cos
> [mm]\bruch{\pi}{2}[/mm]
>  
> so und mit dem kann ich das auf meine Aufgabe anwenden.

Damit hast du den Zusammenhang nur für [mm] $\alpha=\pi$ [/mm] gezeigt; hier benötigst du aber den Nachweis, dass die Formel für alle [mm] \alpha [/mm] gilt.

[guckstduhier] []Wikipedia oder als Erklärung []hier oder []hier

>  
> Einfach schlussfolgern.
>  
> Was anderes habe ich nicht dazu im Skript.
>  
> Müsste doch dann theoretisch passen und langen?
>  
> Gruß Doreen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]