www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisSinuskurve
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Sinuskurve
Sinuskurve < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sinuskurve: Frage
Status: (Frage) beantwortet Status 
Datum: 11:47 Fr 05.11.2004
Autor: irmi01

Hallo.
meine Aufgabe lautet: Kubische Parabeln als Näherungsgraphen an die Sinuskurve.
Ich weiß, wie eine kubische Parabel aussieht und ich weiß wie eine Sinuskurve aussieht
Ich habe keine Ahnung wie ich anfangen muß!
Kann mir bitte jemand helfen.

        
Bezug
Sinuskurve: Ansatz
Status: (Antwort) fertig Status 
Datum: 13:17 Fr 05.11.2004
Autor: Bastiane

Hallo!
Also, als erstes schreibst du auf, wie eine kubische PArabel allgemein aussieht, also [mm] f(x)=ax^3+bx^2+cx+d. [/mm]
Und dann berechnest du einzelne Werte einer Sinukurve, z. B. sin (0) =0, sin [mm] (\bruch{\pi}{2}=1 [/mm] usw.. Und dann musst du versuchen, a,b,c und d zu berechnen, so dass deine Funktion f die gleichen Funktionswerte liefert, also f(0)=0 usw..
Probierst du das mal aus und meldest dich dann wieder?

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Sinuskurve: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:15 Fr 05.11.2004
Autor: irmi01

Hallo Bastiane,
ich habe schon Probleme a, b und c auszurechnen. Ich weiß, dass d=0 sein muß, damit f(0) = 0.
f(1)=a+b+c
Muß ich jetzt a+b+c gleich dem f(1)-Wert der Sinuskurve setzen?



Bezug
                        
Bezug
Sinuskurve: Ein etwas anderer Ansatz
Status: (Antwort) fertig Status 
Datum: 15:13 Fr 05.11.2004
Autor: Paulus

Hallo irmi

ich hoffe, dass mich Bastiane nicht umbringen wird, aber ich will vielleicht einen etwas anderen Ansatz zeigen. Wie schon Bastiane gesagt hat, beginnst du am besten mit dem Polynom 3. Grades:

[mm] $f(x)=ax^{3}+bx^{2}+cx+d$ [/mm]

Ich nehme mal an (du hast das zwar nicht erwähnt), dass die Parabel die Sinuskurve beim Punkt $x=0_$ möglichst gut annähern soll.

So hast du ja bereits herausgefunden, dass dann $d=0_$ sein muss. Sehr gut. :-)

Was ich jetzt aber etwas anders machen würde ist Folgendes:

Überlege einmal, dass die Sinusfunktion eine ungerade Funktion ist. Deine kubische Parabel soll also auch eine ungerade Funktion sein. Weisst du, was dass dann für die Koeffizienten bedeutet?


Wenn dieser Schritt getan ist, dann kannst du dir überlegen: wie gross ist die Steigung des Sinus bei $x=0_$?

Du berechnest also die Steigung deines Polynoms und sorgst dafür, dass die Steigung des Polynoms bei der Stelle $x=0_$ ebenso gross ist wie beim Sinus. (Das sollte dann $c_$ ergeben)

Das Gleiche machst du für die 2. Ableitung bei der Stelle $x=0_$, wenn das nichts Neues bringt, dann halt auch die 3. Ableitung (das sollte dann $a_$ ergeben), und die Aufgabe ist gelöst.

Mit lieben Grüssen

Paul

Bezug
                                
Bezug
Sinuskurve: Funktion 4. Grades?
Status: (Frage) beantwortet Status 
Datum: 17:59 Fr 05.11.2004
Autor: Bastiane

Hallo Paulus!

Keine Angst, ich bringe dich schon nicht um. Hatte nicht allzu lange über die Aufgabe nachgedacht, aber ich hätte es glaube ich trotzdem so gemacht. Aber dein Ansatz hört sich auch gut an.
In welchem Bereich kann denn eigentlich eine Funktion 3. Grades sich dem Sinus annähern? Nur innerhalb einer halben Periode? Ich hatte überlegt, ob man nicht vielleicht mit einer Funktion vierten Grades auch in einem größeren Bereich sich dem Sinus annähern könnte. Schließlich hat solch eine Funktion ja schon mal mehrer Tief- bzw. Hochpunkte.

Aber das ist nur so eine spontage Frage von mir, wenn ich es unbedingt ganz schnell wissen wollte, könnte ich es sicher auch mit ausprobieren herausfinden. Aber vielleicht weißt du das ja auch so?

Viele Grüße
Bastiane
[cap]


Bezug
                                        
Bezug
Sinuskurve: Taylorentwicklung
Status: (Antwort) fertig Status 
Datum: 23:22 Fr 05.11.2004
Autor: mathemaduenn

Hallo Bastiane,
Wie Christian19 schon richtig bemerkt hat schlägt Paulus ja eine Taylorentwicklung(in 0) vor. Wenn Du Dir das Restglied der Taylorentwicklung(3. 4. Grades) anschaust wirst Du sehen was passiert wenn man weiter weg geht. Wenn du Regression benutzt wird durch Erhöhung der Freiheitsgrade natürlich auch die Anpassung besser.
gruß
mathemaduenn

Bezug
                                
Bezug
Sinuskurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:16 Fr 05.11.2004
Autor: irmi01

Hallo Paulus,


ich werde mich mit deiner Antwort auseinandersetzen und hoffe, dass ich eine lösung finde.

Sollte ich noch Fragen haben, werde ich mich wieder melden.
Vielen Dank

Liebe Grüße

Irmi

Bezug
                                        
Bezug
Sinuskurve: Funktion 3./4. Grades
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:54 Fr 05.11.2004
Autor: Christian

Ich weiß leider nicht ganz, wie ich die Frage verstehen soll, Christiane, denn wie gut die Kurve f(x)=sinx annähert hängt ja davon ab, was man mit gut meint...
prinzipiell aber hast Du schon recht, denn grob nähert ein polynom 3. grades (das ja in der regel 2 extrema hat), den sinus bis zur halben periode an. da die ganze geschichte aber ungerade ist, hat man im endeffekt, da das Polynom p(x)=p(-x) dennoch eine ganze perione angenähert.
paulus schlägt ja im prinzip eine approximation mit einem taylor-polynom vor, das gute daran ist, daß sich dieser ansatz bis hin zu beliebiger genauigkeit auf ganz |R treiben läßt...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]