www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikSitzverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Kombinatorik" - Sitzverteilung
Sitzverteilung < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sitzverteilung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:05 So 02.12.2007
Autor: Wimme

Aufgabe
Wie viele Möglichkeiten gibt es, k Personen auf n Stühlen so anzuordnen, dass keine 2 Stühle nebeneinander besetzt sind?
Beweisen Sie Ihre Behauptung.

hi!

Also erst einmal stecke ich schon dabei fest, überhaupt eine Behauptung aufzustellen ;)
Ich habe versucht mir das ganze anhand einer Bitfolge vorzustellen. Sie hat die Länge n, dabei müssen k 1sen(für besetzt) und n-k Nullen auftreten.
Zuerst dachte ich, dann gäb es [mm] 2^{n-k} [/mm] mögliche Platzbelegungen, aber davon habe ich nun Abstand genommen. Ich glaube nun eher, dass es [mm] \vektor{n \\ k} [/mm] mögliche Platzbelegungen gibt. Nun muss ich aber noch die rausfiltern, wo 2 Stühle nebeneinander besetzt sind. Und da hakt es leider.
Ich dachte zuerst, die Anzahl der möglichen nebeneinander sitzenden Leute ist [mm] \vektor{n-1 \\ k-1}. [/mm] (Ich habe einfach sozusagen 2 nebeneinander stehende 1sen zusammengefasst), aber das kann wohl nicht stimmen. Irgendwie glaube ich, dass ich da noch eine Permutation reinbringen muss.

Hoffe ihr könnt mir in diesem Durcheinander helfen - in Kombinatorik bin ich wirklich keine Leuchte scheint mir :(

        
Bezug
Sitzverteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:11 Di 04.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]