www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenSkalarprodukt von Vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Vektoren" - Skalarprodukt von Vektoren
Skalarprodukt von Vektoren < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt von Vektoren: Orthogonalität
Status: (Frage) beantwortet Status 
Datum: 13:32 Mi 04.11.2009
Autor: sunny435

Aufgabe
Gegeben sind eine Gerade und zwei Punkte.

(1) g: [mm] \vec{x}= (2|1|-1)+\lambda*(-1|3|5), [/mm] A (0|0|1), B (1|3|-2)
(2) g: [mm] \vec{x}= [/mm] (3|-1) + [mm] \lambda*(-1|-2), [/mm] A (4|-2), B (1|0)

a) Gib eine Gerade an, welche die Gerade g orthogonal schneidet.
b) Welche Gerade ist orthogonal zur Geraden g und geht durch den Punkt A bzw. B ?

Wenn ich es richtig verstehe, dann brauch man für die a) die 2 Punkte A und B nicht. Ich hab da jetzt zum Besipiel als Gerade genommen
h : [mm] \vec{x}= [/mm] (2|-1|1) [mm] +\lambda*(0|5|-3) [/mm] ( da die richtungsvektoren dann 0 ergeben)

Stimmt soweit oder? bei der (2) rechne ich ja dann genauso.

aber bei der b) bin ich durcheinander. Wie macht man das mit den Punkten?

Muss ich Punkt A zum Beispiel an die Gerade h setzen?



        
Bezug
Skalarprodukt von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Mi 04.11.2009
Autor: Al-Chwarizmi


> Gegeben sind eine Gerade und zwei Punkte.
>  
> (1) $\ g:\ [mm] \vec{x}\ [/mm] =\ [mm] (2|1|-1)+\lambda*(-1|3|5),\ [/mm] A (0|0|1),\ B (1|3|-2)$

>  (2) $\ g: [mm] \vec{x}\ [/mm] =\ (3|-1) + [mm] \lambda*(-1|-2),\ [/mm] A (4|-2),\ B (1|0)$
>  
> a) Gib eine Gerade an, welche die Gerade g orthogonal
> schneidet.
>  b) Welche Gerade ist orthogonal zur Geraden g und geht
> durch den Punkt A bzw. B ?

>  Wenn ich es richtig verstehe, dann braucht man für die a)
> die 2 Punkte A und B nicht.     [ok]
> Ich hab da jetzt zum Besipiel als Gerade genommen
>  h : [mm]\vec{x}=[/mm] (2|-1|1) [mm]+\lambda*(0|5|-3)[/mm]   [verwirrt]

Da wolltest du wohl den Stützpunkt von g nehmen,
hast aber zwei Koordinaten ausgetauscht. Dann
kannst du nicht erwarten, dass sich g und h tatsächlich
noch schneiden !

> ( da die richtungsvektoren dann 0 ergeben)  
>  
> Stimmt soweit oder?

bis auf den obigen Fehler, ja

> bei der (2) rechne ich ja dann genauso.   [ok]
>  
> aber bei der b) bin ich durcheinander. Wie macht man das
> mit den Punkten?

> Muss ich Punkt A zum Beispiel an die Gerade h setzen?


Hallo sunny435,

es gibt zwischen den Fällen (1) und (2) einen wichtigen
Unterschied:  (1) spielt im [mm] \IR^3, [/mm] (2) in der Ebene.
Im [mm] \IR^3 [/mm] gibt es unendlich viele zu einer Geraden
orthogonale Richtungen, in [mm] \IR^2 [/mm] nur eine.

In Aufgabe (b) wird offenbar nicht verlangt, dass
die neue gerade die gegebene schneidet. So kannst
du also einfach in der jeweiligen Lösung zu (a) den
Stützpunkt (2/1/-1) bzw. (3/-1) durch A oder B
ersetzen.

In der Ebene, also in (2), werden dann diese Geraden
die gegebene zwangsläufig auch irgendwo kreuzen,
in (1) aber nicht.

Sollte in (2b) trotzdem verlangt sein, dass die Geraden
durch A bzw. B die gegebene Gerade schneiden sollen,
müsste man anders vorgehen.


LG     Al-Chw.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]