www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisSkizzieren Sie den Graphen...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Skizzieren Sie den Graphen...
Skizzieren Sie den Graphen... < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skizzieren Sie den Graphen...: Frage
Status: (Frage) beantwortet Status 
Datum: 16:50 Do 02.06.2005
Autor: matthes

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Die Aufgabe ist:

Skizzieren Sie den Graphen einer Funktion, der den folgenden Bedingungen genügt:


-Genau ein Wendepunkt, kein Extremum
-...Drei Wendepunkte, kein Extrempunkt
-Genau zwei Tiefpunkte, genau ein Hochpunkt, genau zwei Wendepunkte
-Genau ein Tiefpunkt, kein Hochpunkt, zwei Wendepunkte

(alles mit Funktionsvorschrift)

Fragen:

1. Extremum = Extrempunkt?

2. Wie geht man an die Aufgaben ran, wenn man nicht alle Graphen auswendig kennt?(Also z.B. nicht weiss, dass [mm] y=x^3 [/mm] "genau ein Wendepunkt, kein Extremum" hat)

Ein Prinzip bzw. eine Möglichkeit wäre gut, die man anwenden kann, um einen Graphen mit bestimmten Bedingungen herauszufinden.


Danke
    



        
Bezug
Skizzieren Sie den Graphen...: Idee
Status: (Antwort) fertig Status 
Datum: 17:07 Do 02.06.2005
Autor: Bastiane

Hallo!
[willkommenmr]

> Die Aufgabe ist:
>  
> Skizzieren Sie den Graphen einer Funktion, der den
> folgenden Bedingungen genügt:
>  
>
> -Genau ein Wendepunkt, kein Extremum
>  -...Drei Wendepunkte, kein Extrempunkt
>  -Genau zwei Tiefpunkte, genau ein Hochpunkt, genau zwei
> Wendepunkte
>  -Genau ein Tiefpunkt, kein Hochpunkt, zwei Wendepunkte
>  
> (alles mit Funktionsvorschrift)
>  
> Fragen:
>
> 1. Extremum = Extrempunkt?

[daumenhoch] - also entweder ein Maximum oder ein Minimum (auch Hochpunkt und Tiefpunkt genannt ;-))
  

> 2. Wie geht man an die Aufgaben ran, wenn man nicht alle
> Graphen auswendig kennt?(Also z.B. nicht weiss, dass [mm]y=x^3[/mm]
> "genau ein Wendepunkt, kein Extremum" hat)
>  
> Ein Prinzip bzw. eine Möglichkeit wäre gut, die man
> anwenden kann, um einen Graphen mit bestimmten Bedingungen
> herauszufinden.

Mmh - also, ich glaube, so etwas musste ich noch nie machen. Aber ich würde sagen, dass du es genau andersrum probieren kannst, wie wenn du so etwas von einem Graphen bestimmen sollst. Wenn du also jetzt eine Funktion suchst, die z. B. zwei Hochpunkte und einen Tiefpunkt hat, dann nimm eine allgemeine Funktionsvorschrift (den Grad musst du dir dann allerdings schon überlegen...), bilde die Ableitungen (allgemein) davon, und dann machst du quasi eine Steckbriefaufgabe. Also in diesem Fall hier müsste es dann drei Nullstellen für die Ableitung geben (vielleicht fängst du auch einfach damit an), wobei die zweite Ableitung an zwei Stellen <0 sein muss (für die Hochpunkte) und an einer Stelle >0 (für den Tiefpunkt).
Verstehst du, was ich meine?

Keine Ahnung, ob es da noch ne andere Möglichkeit gibt...

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Skizzieren Sie den Graphen...: MatheBank
Status: (Antwort) fertig Status 
Datum: 18:11 Do 02.06.2005
Autor: informix

Hallo matthes,
[willkommenmr]
Wir freuen uns stets über eine freundliche Begrüßung, du auch?

> Die Aufgabe ist:
>  
> Skizzieren Sie den Graphen einer Funktion, der den
> folgenden Bedingungen genügt:
>  
>
> -Genau ein Wendepunkt, kein Extremum
>  -...Drei Wendepunkte, kein Extrempunkt
>  -Genau zwei Tiefpunkte, genau ein Hochpunkt, genau zwei
> Wendepunkte
>  -Genau ein Tiefpunkt, kein Hochpunkt, zwei Wendepunkte
>  
> (alles mit Funktionsvorschrift)
>  
> Fragen:
>
> 1. Extremum = Extrempunkt?

"jein": mit Maximum, Minimum, Extremum bezeichnet man die extremen Funktionswerte,
Hoch-, Tief- und Extrempunkte sind dann die zugehörigen Punkte des Graphen!

>  
> 2. Wie geht man an die Aufgaben ran, wenn man nicht alle
> Graphen auswendig kennt?(Also z.B. nicht weiss, dass [mm]y=x^3[/mm]
> "genau ein Wendepunkt, kein Extremum" hat)
>  

Es handelt sich sicherlich um MBganzrationale MBFunktionen, die du beschreiben sollst.
Dazu solltest du den Zusammenhang zwischen dem Grad einer ganz-rat. Funktion und der Anzahl der Nullstellen, Extremstellen und Wendestellen kennen:
eine Funktion n-ten Grades hat
* höchstens n Nullstellen, n-1 Extremstellen, n-2 Wendestellen,
* zwischen zwei (benachbarten) Nullstellen mind. eine Extremstelle,
* zwischen zwei (benachbarten) Extremstellen einen Wendepunkt.
Wahrscheinlich kann man noch mehr solcher "Regeln" aufstellen, forsche selbst mal danach.

Ausgehend von den Nullstellen kannst du dir dann selbst Funktionen basteln, die die gewünschten Eigenschaften haben:
* eine Wendestelle, keine Extremstelle: $f(x) = [mm] ax^n$ [/mm] mit n ungerade;
* drei Wendestellen, keine Extremstelle:
f''(x) muss drei Nullstellen haben, aber f'(x) muss [mm] \ne0 [/mm] sein [mm] \Rightarrow [/mm] f ist also mind. vom Grad 5;
f'(x) darf nie 0 werden, ist also durchgehend positiv oder negativ.

Du merkst schon, jetzt fange ich auch an zu schwimmen; eine "ordentliche" Regel ist mir auch nicht bekannt.

Man muss schon mit den verschiedenen Eigenschaften der Funktionen "spielen". [sorry]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]