www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikSockenziehen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik" - Sockenziehen
Sockenziehen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sockenziehen: Bitte kontrollieren (unsicher)
Status: (Frage) beantwortet Status 
Datum: 16:00 Fr 08.04.2005
Autor: ripperrd

Hallo, ich habe eine Frage zu der von mir gelösten Aufgabe:

Ist das richtig so?

Aufgabe: Im Wäschekorb befinden sich 10 verschiedene Paar Socken. Aus den 20 Socken werden 4 Socken zufällig gezogen. Wie groß ist die Wahrscheinlichkeit, durch diese zufällige Auswahl mind. ein vollständiges Paar Socken wiederzufinden?

Hier mein Lösungsweg:

Anz. der Möglichkeiten Socken zu ziehen:

[mm] \vektor{20 \\ 4} [/mm] = 4845

Anz. der möglichen Sockenpaare:

[mm] \vektor{18 \\ 2} [/mm] = 153

Wahrscheinlichkeit ein Paar Socken zu ziehen also:

153/4845 =  [mm] \bruch{3}{95} [/mm]

Insgesamt 10 Paar Socken also: 10 *  [mm] \bruch{3}{95} [/mm] =  [mm] \bruch{6}{19} [/mm]

Abzüglich der Fälle wo man zwei Paar Socken zieht ( da sonst doppelt gezählt):

[mm] \vektor{10 \\ 2} [/mm] = 45 Möglichkeiten 2 Paar Socken zu ziehen mit je der Wahrscheinlichkeit  [mm] \bruch{1}{4845} [/mm]

Also Finale Lösung:

P("mind. 1 Paar Socken dabei")= [mm] \bruch{6}{19} [/mm] - 45 * [mm] \bruch{1}{4845} [/mm]
=  [mm] \bruch{99}{323} [/mm] = 0,3065

        
Bezug
Sockenziehen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:31 Fr 08.04.2005
Autor: banachella

Hallo ripperrd!

Mein Lösungsweg funktioniert wie folgt:
Insgesamt gibt es [mm] $\vektor{20\\4}$ [/mm] Möglichkeiten, vier Socken zu ziehen.
Außerdem gibt es [mm] $\vektor{10\\1}=10$ [/mm] Möglichkeiten, 1 Paar zu ziehen, und danach noch [mm] $\vektor{18\\2}$ [/mm] Möglichkeiten für die beiden verbleibenden Socken, dann hat man mindestens ein paar Socken.
Also
[mm] $P(\mbox{\"{}mind. 1 Paar Socken dabei\"{}})= \bruch{\vektor{10\\1}*\vektor{18\\2}}{\vektor{20\\4}}=\bruch{6}{19}$. [/mm]

Ich verstehe ehrlich gesagt nicht ganz, wie du auf
>Anz. der möglichen Sockenpaare:
>

> [mm] $\vektor{18\\2} [/mm] = 153 $

Denn die Anzahl der Sockenpaare ist 10. Und die Anzahl der möglichen Paarungen, also zwei gleichzeitig gezogene Socken, ist [mm] $\vektor{20\\2}$. [/mm]

Was mich daran erstaunt ist, dass deine Zahlen trotzdem so nah an der Lösung sind, denn die [mm] $\bruch{6}{19}$ [/mm] tauchen bei dir ja auch auf...

Gruß, banachella

Bezug
                
Bezug
Sockenziehen: anderer Lösungsweg?!
Status: (Frage) beantwortet Status 
Datum: 14:27 So 10.04.2005
Autor: blindfisch

Hallo!
Ich hab mir die Aufgabe durchgelesen und einen anderen Lösungsweg verfolgt.... Leider stimmen die Ergebniss nicht überein und ich würde gerne wissen, wo der Fehler in meiner Überlegung steckt:

Zuerst die Gegenwahrscheinlichkeit: bei n=4 Zügen keinen gleichen Socken zu ziehen:

Es wird ein Socken gezogen.
Daraufhin ist die Wahrscheinlichkeit beim nächsten Zug einen unpassenden zu ziehen [mm] (\bruch{18}{19}) [/mm]
Im 3. Zug: [mm] (\bruch{16}{18}) [/mm]
Im 4. Zug: [mm] (\bruch{14}{17}) [/mm]

Also ist die Wahrscheinlichkeit 4 unpassende Socken zu ziehen:
[mm] p(\overline{a}) [/mm] =  [mm] \bruch{18}{19} [/mm] * [mm] \bruch{16}{18} [/mm] * [mm] \bruch{14}{17} [/mm] = 0,693

=> p(a) = 1 - 0.693 = 0.307

Wo liegt mein Fehler?


Bezug
                        
Bezug
Sockenziehen: doch richtig
Status: (Antwort) fertig Status 
Datum: 15:03 So 10.04.2005
Autor: miniscout

Hallo blindfisch!

Hab den Rechenweg nicht vollständig nachvollzogen - hab nicht so viel Ahnung davon - aber ich hab deine letzten Schritte nachgerechnet:
Du hast doch gerechnet:

[mm] $p(\overline{a})=\bruch{18}{19}*\bruch{16}{18}*\bruch{14}{17}=0,693$ [/mm]

wenn du das Ergebnis als Bruch stehen lässt:

[mm] $p(\overline{a})=\bruch{18}{19}*\bruch{16}{18}*\bruch{14}{17}$ [/mm]

[mm] $\Rightarrow p(\overline{a})= \bruch{16*14}{19*17}$ [/mm]

[mm] $\Rightarrow p(\overline{a})= \bruch{224}{323}\approx0,30650155$ [/mm]

Dann bist du wieder beim richtigen Ergebnis [daumenhoch]
Manchmal kommt's halt nur auf's Runden an....;-)

Schöne Grüße,
miniscout [clown]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]