Spannungsteiler < Elektrotechnik < Ingenieurwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:06 Do 19.03.2009 | Autor: | kowi |
Aufgabe | Ermitteln Sie für den gegebenen einfachen Hochpass die Ausgangsspannung [mm] u_{out} [/mm] in Abhängigkeit der Eingangsspannung und der Bauteilparameter für sinusförmige Signale
[Dateianhang nicht öffentlich]
Tipp: Es gilt [mm] Z_C [/mm] = [mm] \frac{1}{jw*C}
[/mm]
Lösung:
Der Hochpass kann als komplexer Spannungsteiler aufgefasst werden, somit gilt [mm] \frac{U_C}{U_R} [/mm] = [mm] \frac{Z_C}{R} [/mm] |
Hallo.
Ich verstehe hier einiges nicht.
Was ist denn das [mm] Z_C, [/mm] blöde gesagt, das kommt in der Zeichnung auch gar nicht vor. Gibt es dafür auch einen Namen bzw. wo in der Zeichnung müsste man das einzeichen?
dann verstehe ich nicht, wie man genau auf [mm] \frac{U_C}{U_R} [/mm] = [mm] \frac{Z_C}{R} [/mm] kommt.
Ich gucke mir zwar ein Bild des Spannungsteilers an, nämlich
[Dateianhang nicht öffentlich]
Hier kann ich auch mit dem Gesetz U = R*I
die Beziehung [mm] $\frac{U_1}{U_2} [/mm] = [mm] R_1/R_2$ [/mm] herleiten.
Bei dem obigen Bild habe ich allerdings nur einen Widerstand R.
Grüße,
kowi
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Dateianhänge: Anhang Nr. 1 (Typ: GIF) [nicht öffentlich] Anhang Nr. 2 (Typ: GIF) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:18 Do 19.03.2009 | Autor: | Herby |
Moin Kowi,
> Ermitteln Sie für den gegebenen einfachen Hochpass die
> Ausgangsspannung [mm]u_{out}[/mm] in Abhängigkeit der
> Eingangsspannung und der Bauteilparameter für sinusförmige
> Signale
>
> [Dateianhang nicht öffentlich]
>
> Tipp: Es gilt [mm]Z_C[/mm] = [mm]\frac{1}{jw*C}[/mm]
>
> Lösung:
>
> Der Hochpass kann als komplexer Spannungsteiler aufgefasst
> werden, somit gilt [mm]\frac{U_C}{U_R}[/mm] = [mm]\frac{Z_C}{R}[/mm]
> Hallo.
>
> Ich verstehe hier einiges nicht.
> Was ist denn das [mm]Z_C,[/mm] blöde gesagt, das kommt in der
> Zeichnung auch gar nicht vor. Gibt es dafür auch einen
> Namen bzw. wo in der Zeichnung müsste man das einzeichen?
Du hast in der Zeichnung [mm] u_C [/mm] und [mm] i_C. [/mm] Fehlt also nur noch [mm] R_C [/mm] <-- das sagt man aber nicht im Komplexen, sondern [mm] R_C=Z_C. [/mm] Und noch etwas: da [mm] u_C [/mm] und [mm] i_C [/mm] sich über die Zeit verändern (liegt an der Sinusspannung) schreibt man diese Buchstaben klein [only nice to know].
> dann verstehe ich nicht, wie man genau auf [mm]\frac{U_C}{U_R}[/mm]
> = [mm]\frac{Z_C}{R}[/mm] kommt.
>
> Ich gucke mir zwar ein Bild des Spannungsteilers an,
> nämlich
>
> [Dateianhang nicht öffentlich]
>
> Hier kann ich auch mit dem Gesetz U = R*I
>
> die Beziehung [mm]\frac{U_1}{U_2} = R_1/R_2[/mm] herleiten.
>
> Bei dem obigen Bild habe ich allerdings nur einen
> Widerstand R.
Nun nicht mehr, oder
Liebe Grüße
Herby
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:20 Fr 20.03.2009 | Autor: | kowi |
Hallo Herby
> Du hast in der Zeichnung [mm]u_C[/mm] und [mm]i_C.[/mm] Fehlt also nur noch
> [mm]R_C[/mm]
So hatte ich noch gar nicht gedacht. Danke für diesen Gedankengang
> <-- das sagt man aber nicht im Komplexen, sondern
> [mm]R_C=Z_C.[/mm] Und noch etwas:
Aaaaaaachso. In der Literatur wird das anscheinend auch immer stillschweigend vorausgesetzt. Ein Fragezeichen bei mir weniger, dankeschön :)
> da [mm]u_C[/mm] und [mm]i_C[/mm] sich über die Zeit
> verändern (liegt an der Sinusspannung) schreibt man diese
> Buchstaben klein [only nice to know].
Auch danke für diese lehrreiche Information
> > dann verstehe ich nicht, wie man genau auf [mm]\frac{U_C}{U_R}[/mm]
> > = [mm]\frac{Z_C}{R}[/mm] kommt.
> >
> > Ich gucke mir zwar ein Bild des Spannungsteilers an,
> > nämlich
> >
> > [Dateianhang nicht öffentlich]
> >
> > Hier kann ich auch mit dem Gesetz U = R*I
> >
> > die Beziehung [mm]\frac{U_1}{U_2} = R_1/R_2[/mm] herleiten.
> >
> > Bei dem obigen Bild habe ich allerdings nur einen
> > Widerstand R.
>
> Nun nicht mehr, oder
In diesem sehr einfachen Beispiel ist es mir jetzt klar.
Danke!
Kowi
|
|
|
|