www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenSpannungsverteilung in Scheibe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - Spannungsverteilung in Scheibe
Spannungsverteilung in Scheibe < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spannungsverteilung in Scheibe: Problembeschreibung
Status: (Frage) überfällig Status 
Datum: 15:27 Di 27.10.2009
Autor: hagger

Hallo.
Ich habe eine Frage, die im Zusammenhang mit der Berechnung der Spannungsverteilung in einer isotropen Scheibe steht (Ich will innerhalb meiner Diplomarbeit unter anderem so eine analytische Berechnung durchführen).


Nach Lekhnitskii bzw. De Jong kann die Spannung in einer isotropen Scheibe mit Loch (Radius=R) - beispielsweise in x-Richtung bestimmt werden durch


[mm] \begin{equation} \sigma_x = 2 Re(\mu_1^2 \varphi'(z_1) + \mu_2^2 \psi'(z_2)) \quad . \end{equation} [/mm]

[mm] \medskip [/mm]
[mm] ($\varphi(z_1)$ [/mm] und [mm] $\psi(z_2)$ [/mm] sind von [mm] $\zeta$ [/mm] abhängige Funktionen)

Die relevanten  Variablen lassen sich wie folgt berechnen:

[mm] \begin{equation} z_k = x + \mu_k \cdot y \qquad k=1,2 \end{equation} [/mm]

[mm] \medskip [/mm]
[mm] $\mu_1$ [/mm] und [mm] $\mu_2$ [/mm] werden definiert durch

[mm] \begin{equation} \mu_1 = \sqrt{\frac{r-a}{2}} + \mathrm i \cdot \sqrt{\frac{r+a}{2}} \end{equation} [/mm]

[mm] \begin{equation} \mu_2 = - \sqrt{\frac{r-a}{2}} + \mathrm i \cdot \sqrt{\frac{r+a}{2}} \end{equation} [/mm]

[mm] \medskip [/mm]
$r$ und $a$ sind reele Zahlen (Berechnen sich aus Einträgen der Nachgiebigkeitsmatrix des Werkstoffs).

[mm] \medskip [/mm]
Es wird nun eine Koordinatentransformation in die komplexe Ebene (Konforme Abbildung) in folgender Form eingeführt (siehe auch Abbildung):

[mm] \begin{equation} \zeta_k = \frac{z_k \pm \sqrt{z_k^2-R^2(1+\mu_k^2)}}{R(1-\mathrm i \cdot \mu_k)} \qquad k=1,2 \label{prob} \end{equation} [/mm]

[mm] \medskip [/mm]
Obige Gleichung stellt das Problem dar: Was entscheidet, ob der Zähler des Bruchs von [mm] $\zeta_k$ ($\displaystyle \pm \sqrt{z_k^2-R^2(1+\mu_k^2)}$) [/mm] mit einer positiven oder negativen Wurzel versehen wird?

[mm] \medskip [/mm]
Im Verlauf des Berechnungsgangs kann nur eine Lösung von [mm] $\zeta_k$ [/mm] weiterverwendet werden (Fallabhängig - warscheinlich je nach x- und y-Koordinate des betrachteten Punktes auf der Scheibe).

Die Funktion unter der Wurzel [mm] $\displaystyle z_k^2-R^2(1+\mu_k^2)$ [/mm] besitzt eine Unstetigkeit - eventuell hat es damit etwas zu tun.

Leider bin ich auch nach mehrtägigem Probieren und Transformieren zu keiner Lösung gelangt...

In der Literatur wurde immer nur die Formel für [mm] $\zeta_k$ [/mm] in genannter Form angegeben, ohne näher darauf einzugehen.

Ich würde mich sehr freuen, wenn mir jemand weiterhelfen könnte!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
        
Bezug
Spannungsverteilung in Scheibe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mi 11.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]