www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisSpektraltheorie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - Spektraltheorie
Spektraltheorie < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spektraltheorie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:41 Fr 26.08.2011
Autor: physicus

Hallo,

Ich habe eine Frage zur Spektraltheorie. Wenn ich einen Operator [mm] L \in L(X) [/mm] habe von dem ich weiss, dass er ein Inverses besitzt, dann weiss ich, dass dieses Inverse stetig ist (Satz von der offenen Abbildung).
Nun interessiert mich die Frage, ob dieser Operator ein nicht leeres Spektrum resp. Resolventenmenge hat.
Ich weiss, dass beide nicht leer sind, allerdings würde für den Beweis bereits ausreichen, dass [mm] L\in L(X) [/mm]. Ich frage mich nun, inwiefern die zusätzliche Annahme, dass [mm] L [/mm] invertierbar ist mir hilft um den Beweis zu vereinfachen. Eines ist gleich klar, nämlich:

[mm] \rho(L) \not= \emptyset[/mm]

wobei [mm] \rho(L):=\{z \in \IC | (z-L)^{-1} \text{ existiert, }(z-L)^{-1} \in L(X) \} [/mm] die Resolventenmenge ist. Denn ich kann ja einfach $\ z = 0 $ setzen. D.h. $\ 0 [mm] \in \rho(L)$. [/mm]
Jetzt müsste ich ja nur noch zeigen, dass nicht ganz $\ [mm] \IC [/mm] $ die Resolventenmenge ist, dann wäre das Spektrum auch nicht leer. Aber wieso folgt das? Resp. wie kann ich zeigen, dass für ein $\ z [mm] \in \IC [/mm] $ die Abbildung $\ [mm] (z-L)^{-1} [/mm] $ nicht existiert?

Gruss

physicus

        
Bezug
Spektraltheorie: Antwort
Status: (Antwort) fertig Status 
Datum: 08:53 Fr 26.08.2011
Autor: fred97


> Hallo,
>  
> Ich habe eine Frage zur Spektraltheorie. Wenn ich einen
> Operator [mm]L \in L(X)[/mm] habe von dem ich weiss, dass er ein
> Inverses besitzt, dann weiss ich, dass dieses Inverse
> stetig ist (Satz von der offenen Abbildung).


Dazu muß X eine Banachraum sein ! Ist X ein unvollständiger normierter Raum, so gilt obiger Satz i.a. nicht.


> Nun interessiert mich die Frage, ob dieser Operator ein
> nicht leeres Spektrum resp. Resolventenmenge hat.
> Ich weiss, dass beide nicht leer sind, allerdings würde
> für den Beweis bereits ausreichen, dass [mm]L\in L(X) [/mm]. Ich
> frage mich nun, inwiefern die zusätzliche Annahme, dass [mm]L[/mm]
> invertierbar ist mir hilft um den Beweis zu vereinfachen.
> Eines ist gleich klar, nämlich:
>  
> [mm]\rho(L) \not= \emptyset[/mm]
>  
> wobei [mm]\rho(L):=\{z \in \IC | (z-L)^{-1} \text{ existiert, }(z-L)^{-1} \in L(X) \}[/mm]
> die Resolventenmenge ist. Denn ich kann ja einfach [mm]\ z = 0[/mm]
> setzen. D.h. [mm]\ 0 \in \rho(L)[/mm].
>  Jetzt müsste ich ja nur
> noch zeigen, dass nicht ganz [mm]\ \IC[/mm] die Resolventenmenge
> ist, dann wäre das Spektrum auch nicht leer. Aber wieso
> folgt das? Resp. wie kann ich zeigen, dass für ein [mm]\ z \in \IC[/mm]
> die Abbildung [mm]\ (z-L)^{-1}[/mm] nicht existiert?


Annahme: [mm] \rho(L)= \IC. [/mm] Sei f eine stetige Linearform auf L(X). Setze

                    [mm] F(z):=f((z-L)^{-1}) [/mm]

Dann ist F eine ganze Funktion und mit der Neumannschen Reihe sieht man: F(z) [mm] \to [/mm] 0  für $|z| [mm] \to \infty$. [/mm]

Nach dem Satz von Liouville ist F auf [mm] \IC [/mm] konstant  =0. Also auch (z=0)

               [mm] f(L^{-1})=0. [/mm]

Nun war f beliebig aus dem topologischen Dual von L(X). Daher liefert der Satz von Hahn-Banach den Widerspruch: [mm] L^{-1}=0. [/mm]

FRED



>  
> Gruss
>  
> physicus


Bezug
                
Bezug
Spektraltheorie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:59 Fr 26.08.2011
Autor: physicus

Hallo fred

Danke für die schnelle Antwort. Ich hätte erwähnen sollen, dass $\ X $ ein Banach Raum ist. Genau so haben wir das auch bewiesen. Aber dafür braucht man ja nicht zu wissen, dass $\ [mm] L^{-1} [/mm] $ existiert und daher auch stetig ist. Ich dachte mir evt. kann man das anders zeigen, da ich ansonsten die Voraussetzung als überflüssig sehe.
Wie bereits erwähnt haben wir den Satz mit der Voraussetzung $\ L [mm] \in [/mm] L(X) $ bewiesen, und ich dachte mit den zusätzlichen Voraussetzung gehe das evt. (noch) leichter. Aber danke für die Antwort

Gruss

physicus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]