www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieSpezialfall von Tychonoff
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Topologie und Geometrie" - Spezialfall von Tychonoff
Spezialfall von Tychonoff < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spezialfall von Tychonoff: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Di 04.06.2013
Autor: jack1975

Aufgabe
Sei die Menge [mm] $\{0,1\}$ [/mm] versehen mit der diskreten Topologie. Zeige, dass dann  [mm] $\produkt_{i=1}^{\infty} \{0,1 \}$ [/mm] kompakt ist.

Also ich habe versucht es direkt über die Produkttopologie zu machen. Wenn ich mit einer offenen Überdeckung starte und eine beliebige offene Menge daraus hernehme, weiß ich ja, dass alle bis auf endlich viele Komponenten dieser Menge schon [mm] $\{0,1 \}$ [/mm] sein muss. Aber die endlich vielen fehlenden Komponenten kann man ja dann nicht einfach überdecken, oder? Denn diese anderen offenen Mengen der Überdeckung haben ja eventuell andere Lücken.

Wir haben kurz zuvor zeigen müssen, dass die Produktmetrik die Produkttopologie auf diesem Raum erzeugt. Da wir aber nicht wissen, dass Folgenkompaktheit äquivalent zu Überdeckungskompaktheit ist, bringt mich das ja nicht wirklich weiter, oder übersehen ich da etwas?

Vielen Dank, bin für jeden Hinweis dankbar :). Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Spezialfall von Tychonoff: Antwort
Status: (Antwort) fertig Status 
Datum: 07:14 Mi 05.06.2013
Autor: fred97

Du musst doch nur zeigen, dass  $ [mm] \{0,1\} [/mm] $ kompakt ist !

Dazu überdecken wir  $ [mm] \{0,1\} [/mm] $ mit einer Familie [mm] (G_i)_{i \in I} [/mm] offener Mengen.

Mach Dir klar, dass Du dann nur 2 Mengen dieser Familie brauchst, um  $ [mm] \{0,1\} [/mm] $ zu überdecken.

FRED

Bezug
        
Bezug
Spezialfall von Tychonoff: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:32 Mi 05.06.2013
Autor: jack1975

Hallo Fred,

naja, dass die endliche Punktmenge [mm] $\{ 0,1\}$ [/mm] kompakt ist, ist mir klar. Es ging eben darum den Satz von Tychonoff nicht zu benutzen, sondern diesen Spezialfall zu beweisen. Mein Problem ist, dass ich nicht wirklich sehe wie ich hier die Endlichkeit der einzelnen Räume sinnvoll einbringen kann. Zu zeigen, dass der Raum folgenkompakt ist, wäre kein Problem, nur das scheint nicht das Ziel zu sein.

Bezug
                
Bezug
Spezialfall von Tychonoff: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Fr 07.06.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]