Sphäre Integral < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:40 Di 20.01.2015 | Autor: | Topologe |
Aufgabe | Sei [mm] S^{2}=\{x,y,z)\in \IR^{3};x^{2}+y^{2}+z^{2}=1\}. [/mm] Berechnen Sie das Integral
[mm] \integral_{S^{2}}(x^{2}+y^{2}-\lamda*z^{2})dS [/mm] |
Lösung:
Wir wählen Kugelkoordinaten: [mm] \psi(\phi,\theta)=(cos(\phi)cos(\theta),sin(\phi)cos(\theta),sin(\theta)). [/mm] Die Gramsche Determinante für diese Karte ist [mm] cos(\theta). [/mm] Somit erhalten wir
[mm] \integral_{S^{2}}(x^{2}+y^{2}-\lambda*z^{2})dS [/mm] = [mm] \integral_{S^{2}}(1-(1+\lambda)z^{2})dS [/mm] = [mm] \integral_{0}^{2\pi}(\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}(1-(1+\lambda)sin^{2}(\theta))cos(\theta)d\phi)d\theta [/mm] = [mm] 2\pi[sin(\theta)-(1+\lambda)\bruch{1}{3}sin^{3}(\theta)]_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}
[/mm]
[mm] =2\pi(\bruch{4}{3}-\bruch{2\lambda}{3}).
[/mm]
Ok, also mir ist der Schritt überhaupt nicht klar von:
[mm] \integral_{0}^{2\pi}(\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}(1-(1+\lambda)sin^{2}(\theta))cos(\theta)d\phi)d\theta [/mm] = [mm] 2\pi[sin(\theta)-(1+\lambda)\bruch{1}{3}sin^{3}(\theta)]_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}
[/mm]
Eigentlich müsste man hier doch zuerst in der inneren Klammer nach [mm] \phi [/mm] aufleiten, aber wie es für mich aussieht, wurde innen nach [mm] \theta [/mm] und aussen nach [mm] \phi [/mm] aufgeleitet. Kann mir das vllt jemand erklären, was ich hier übersehe?
LG
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:45 Di 20.01.2015 | Autor: | fred97 |
> Sei [mm]S^{2}=\{x,y,z)\in \IR^{3};x^{2}+y^{2}+z^{2}=1\}.[/mm]
> Berechnen Sie das Integral
>
> [mm]\integral_{S^{2}}(x^{2}+y^{2}-\lamda*z^{2})dS[/mm]
> Lösung:
> Wir wählen Kugelkoordinaten:
> [mm]\psi(\phi,\theta)=(cos(\phi)cos(\theta),sin(\phi)cos(\theta),sin(\theta)).[/mm]
> Die Gramsche Determinante für diese Karte ist [mm]cos(\theta).[/mm]
> Somit erhalten wir
> [mm]\integral_{S^{2}}(x^{2}+y^{2}-\lambda*z^{2})dS[/mm] =
> [mm]\integral_{S^{2}}(1-(1+\lambda)z^{2})dS[/mm] =
> [mm]\integral_{0}^{2\pi}(\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}(1-(1+\lambda)sin^{2}(\theta))cos(\theta)d\phi)d\theta[/mm]
> =
> [mm]2\pi[sin(\theta)-(1+\lambda)\bruch{1}{3}sin^{3}(\theta)]_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}[/mm]
> [mm]=2\pi(\bruch{4}{3}-\bruch{2\lambda}{3}).[/mm]
>
>
> Ok, also mir ist der Schritt überhaupt nicht klar von:
>
> [mm]\integral_{0}^{2\pi}(\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}(1-(1+\lambda)sin^{2}(\theta))cos(\theta)d\phi)d\theta[/mm]
> =
> [mm]2\pi[sin(\theta)-(1+\lambda)\bruch{1}{3}sin^{3}(\theta)]_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}[/mm]
>
> Eigentlich müsste man hier doch zuerst in der inneren
> Klammer nach [mm]\phi[/mm] aufleiten, aber wie es für mich
> aussieht, wurde innen nach [mm]\theta[/mm] und aussen nach [mm]\phi[/mm]
> aufgeleitet. Kann mir das vllt jemand erklären, was ich
> hier übersehe?
[mm] f(\theta):=1-(1+\lambda)sin^{2}(\theta))cos(\theta) [/mm] ist bezüglich [mm] \phi [/mm] konstant, also ist
[mm] \integral_{0}^{2 \pi}{f(\theta) d \phi}= [/mm] 2 [mm] \pi f(\theta)
[/mm]
FRED
>
>
> LG
|
|
|
|