www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungSpiegelgerade an einer Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Spiegelgerade an einer Ebene
Spiegelgerade an einer Ebene < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spiegelgerade an einer Ebene: Ansätze
Status: (Frage) beantwortet Status 
Datum: 16:43 Mi 25.01.2006
Autor: Phoney

Aufgabe
Wie erhält man die Gleichung der Spiegelgeraden von g bei einer Spiegelung an der Ebene E? (2 Fälle: g  [mm] \parallel [/mm] E und  g [mm] \cap [/mm] E = {S})

Hallo.
Ich kann mit der Aufgabe so nichts anfangen. Also ist meine Frage: was steht da eigentlich?
Obwohl mir der Formeleditor, der das erste Zeichen (parallel) so schön erläutert hat. Also ist die Frage nun, Wie man eine Gerade an einer Ebene spiegelt ( g ist parallel zu E). Und einmal, wenn die gerade die Ebene schneidet?

Wie würde ich da die Spiegelgerade am leichtesten aufstellen für den Fall g ist parallel zu E? Ich würde mir zwei Punkte auf der Gerade suchen und die einfach an der Ebene spiegeln.

Gibts dazu vielleicht eine Alternative? Reicht es nicht, wenn ich nur den Ortsvektor der Geraden an der Ebene spiegel und der Richtungsvektor bleibt "konstant", weil sie immer noch parallel sein sollten?

Danke schon einmal!

Grüße Phoney


        
Bezug
Spiegelgerade an einer Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Mi 25.01.2006
Autor: lui

Hi
Deine Vermutung bei der parallelen Gerade ist richtig.
Du kannst den Richtungsvektor übernehmen und musst nur den Punkt an der Ebene spiegeln.
Für den anderen Fall:
Als erstes musst du den Schnittpunkt von g und E berechnen. Das ist der erste Punkt von g'
Den zweiten Punkt für g' bekommst du, wenn du P an E spiegelst.
Mit diesen zwei Punkten kannst du g' aufstellen.
Ich hoffe du hast alles Verstanden!
Grüße lui

Bezug
                
Bezug
Spiegelgerade an einer Ebene: Super.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:30 Mi 25.01.2006
Autor: Phoney

Hallöle.

> Hi
>  Deine Vermutung bei der parallelen Gerade ist richtig.
>  Du kannst den Richtungsvektor übernehmen und musst nur den
> Punkt an der Ebene spiegeln.
>  Für den anderen Fall:
>  Als erstes musst du den Schnittpunkt von g und E
> berechnen. Das ist der erste Punkt von g'
>  Den zweiten Punkt für g' bekommst du, wenn du P an E
> spiegelst.
>  Mit diesen zwei Punkten kannst du g' aufstellen.
>  Ich hoffe du hast alles Verstanden!

Ja, danke dir, das habe ich verstanden. Meine letzten zehn Fragen im Matheraum haben sich mit dem Thema beschäftigt.

>  Grüße lui

Grüße Phoney

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]