www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenSpiegelung des R2
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Spiegelung des R2
Spiegelung des R2 < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spiegelung des R2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:02 Mo 12.01.2009
Autor: Tu-er

Hallo,

ich suche Matrix A des R2x2, sodass die lineare Abbildung A eine Spiegelung an der vom Vektor [mm]\vmat{ -3 \\ -1 }[/mm] erzeugten Geraden beschreibt.
Ich habe kein Plan, wie ich das machen soll. Ich habe kein Ansatz.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Spiegelung des R2: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Mo 12.01.2009
Autor: angela.h.b.


> Hallo,
>  
> ich suche Matrix A des R2x2, sodass die lineare Abbildung A
> eine Spiegelung an der vom Vektor [mm]\vmat{ -3 \\ -1 }[/mm]
> erzeugten Geraden beschreibt.
>  Ich habe kein Plan, wie ich das machen soll. Ich habe kein
> Ansatz.

Hallo,

[willkommenmr].

Um die Spiegelmatrix zu bekommen überlege Dir, auf welche Vektoren die beiden Standardvektoren [mm] e_1 [/mm] und [mm] e_2 [/mm] duch die Spiegelung abgebildet werden.

Du findest dieses leicht heraus, wenn Du die [mm] e_i [/mm] schreibst als Linearkobination aus [mm] \vmat{ -3 \\ -1 } [/mm] und einem dazu senkrechten Vektor:

Überlege Dir, was mit den Vektoren, die in Richtung [mm] \vmat{ -3 \\ -1 } [/mm] weisen und mit den dazu senkrechten  bei der Speigelung passiert.

Gruß v. Angela

Bezug
                
Bezug
Spiegelung des R2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:03 Mo 12.01.2009
Autor: Tu-er

könnte  man das auch mit

[cos(k) sin(k)]
[sin(k) -cos(k)]

wobei k/2 der Neigungswinkel zwischen der Geraden und der Abb. ist, beschreiben? "k" (den Winkel) könnte man doch auch mit dem arctan([mm]\bruch{-3}{-1}[/mm]) bestimmen, oder?.Ich stehe leider total auf dem Schlauch:( .

Bezug
                        
Bezug
Spiegelung des R2: Antwort
Status: (Antwort) fertig Status 
Datum: 08:03 Di 13.01.2009
Autor: angela.h.b.


> könnte  man das auch mit
>
> [cos(k) sin(k)]
>  [sin(k) -cos(k)]
>  
> wobei k/2 der Neigungswinkel zwischen der Geraden und der
> Abb. ist, beschreiben? "k" (den Winkel) könnte man doch
> auch mit dem arctan([mm]\bruch{-3}{-1}[/mm]) bestimmen, oder?.Ich
> stehe leider total auf dem Schlauch:( .

Hallo,

ja, so kannst Du das machen.

Gruß v. Angela


Bezug
                                
Bezug
Spiegelung des R2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:03 Di 13.01.2009
Autor: Tu-er

sehr schön, vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]