www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraSpiegelungen konjugiert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Spiegelungen konjugiert
Spiegelungen konjugiert < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spiegelungen konjugiert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Do 20.03.2008
Autor: Rutzel

Aufgabe
Weise nach, oder widerlege, dass alle Spiegelungen in [mm] Iso_2(\IR) [/mm] zueinander konjugiert sind.

Hi,
A' ist konjugiert zu A, falls ein P [mm] \in GL_n(K) [/mm] existerit, sodass
[mm] A'=PAP^{-1} [/mm]
[mm] \gdq [/mm]
A'P=PA

Alle Spiegelungsmatrizen haben die Form:
[mm] \pmat{ cos(\alpha) & sin(\alpha) \\ sin(\alpha) & -cos(\alpha) } [/mm]

Man nimmt als A:
[mm] \pmat{ cos(\alpha) & sin(\alpha) \\ sin(\alpha) & -cos(\alpha) } [/mm]

und als A':
[mm] \pmat{ cos(\beta) & sin(\beta) \\ sin(\beta) & -cos(\beta) } [/mm]

Jetzt kann man für P natürlich eine Matrix
[mm] \pmat{ a & b \\ c & d } [/mm]

nehmen, und in die Bedingung für Konjugiertheit einsetzetn. Jedoch komme ich so nicht weiter, da man ja 4 Gleichungen und 6 Unbekannte hat [mm] (\alpha, \beta, [/mm] a, b, c, d).

Gibt es eventuell eine geometrische Herangehensweise?

Was kann man isch geometrisch unter Konjugiertheit überhaupt vorstellen?

Gruß,
Rutzel

        
Bezug
Spiegelungen konjugiert: Tipp
Status: (Antwort) fertig Status 
Datum: 23:08 Do 20.03.2008
Autor: zahllos

Hallo,

du hast bei der Berechnung von P nur vier Unbekannte, denn [mm] \alpha [/mm] und [mm] \beta [/mm] sind gegeben!

Anschaulich beschreiben diese Matrizen Spiegelungen an zwei zueinander senkrechten Geraden der Form: [mm] \lambda(cos\frac{\alpha}{2} [/mm] ; [mm] sin\frac{\alpha}{2}) [/mm] und [mm] \lambda(cos\frac{\alpha+\pi}{2} [/mm] ; [mm] sin\frac{\alpha+\pi}{2}) [/mm] bzw.  [mm] \lambda(cos\frac{\beta}{2} [/mm] ; [mm] sin\frac{\beta}{2}) [/mm] und [mm] \lambda(cos\frac{\beta+\pi}{2} [/mm] ; [mm] sin\frac{\beta+\pi}{2}). [/mm] Man kann nun das eine Paar senkrechter Geraden durch eine Drehung in das andere überführen, d.h. für die Matrix P würde ich die Matrix derjenigen Drehung ansetzen, die das eine Geradenpaar auf das andere dreht.

Der Begriff konjugiert kommt hier m.E. aus der Gruppentheorie, wo man auch von konjugierten Elementen spricht. Ob es da eine geometrische Bedeutung gibt, d.h. ob man zwei Abbildungen ansieht, dass die zugehörigen Matrizen konjugiert sind, weiß ich nicht, ich glaube es aber nicht.




Bezug
                
Bezug
Spiegelungen konjugiert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:05 Fr 21.03.2008
Autor: Rutzel

Hi,
danke für Deine Antwort.

Wie kommst du auf die Geraden?

Bezug
                        
Bezug
Spiegelungen konjugiert: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Fr 21.03.2008
Autor: Gnometech

Grüße!

Die Geraden sind die Eigenräume der Abbildung zu den Eigenwerten 1 bzw. -1. Man kann jetzt mit Hilfe der Sätze über Sinus und Cosinus nachrechnen, dass die Drehung eingeschränkt auf diese Geraden wirklich wirkt wie Multiplikation mit 1 (Identität) bzw. -1.

Aber das ist ziemliche Rechnerei. Es ist einfacher, die Darstellung mit Sinus und Cosinus zu vergessen und geometrisch zu argumentieren.

Sind $s$ und $s'$ Spiegelungen in [mm] $\mbox{Iso}_2(\IR)$, [/mm] dann bezeichne die Eigenräume wie folgt: Den Eigenraum zum Eigenwert 1 von $s$ (die Gerade, die $s$ fixiert, an der also gespiegelt wird) nenne [mm] $U_1$, [/mm] den Eigenraum zum Eigenwert -1 nenne [mm] $U_{-1}$. [/mm] Entsprechend [mm] $U_1'$ [/mm] und [mm] $U_{-1}'$ [/mm] für $s'$.

Dann gilt [mm] $\IR^2 [/mm] = [mm] U_1 \oplus U_{-1} [/mm] = [mm] U_1' \oplus U_{-1}'$ [/mm] und die Summe ist jeweils orthogonal.

Sei nun [mm] $\sigma$ [/mm] eine Drehung in [mm] $\mbox{Iso}_2(\IR)$, [/mm] die [mm] $U_1$ [/mm] auf [mm] $U_1'$ [/mm] abbildet (davon gibt es zwei). Dann wird natürlich auch [mm] $U_{-1}$ [/mm] von [mm] $\sigma$ [/mm] auf [mm] $U_{-1}'$ [/mm] geschickt, denn diese Räume sind das orthogonale Komplement der anderen und die Drehung ist eine Isometrie, insbesondere winkelerhaltend.

Betrachte nun [mm] $\sigma^{-1} \circ [/mm] s' [mm] \circ \sigma$. [/mm] Ein Vektor aus [mm] $U_1$ [/mm] wird unter dieser Abbildung fixiert, denn erst schickt [mm] $\sigma$ [/mm] ihn nach [mm] $U_1'$, [/mm] dann wird $s'$ angewandt (das ändert nichts) und [mm] $\sigma^{-1}$ [/mm] schickt den Vektor zurück.

Ein Vektor aus [mm] $U_{-1}$ [/mm] hingegen wird erst nach [mm] $U_{-1}'$ [/mm] abgebildet, dort wird sein Vorzeichen von $s'$ gewechselt und anschließend wird er zurück nach [mm] $U_{-1}$ [/mm] geschickt.

Die obige Abbildung wirkt auf [mm] $U_1$ [/mm] und [mm] $U_{-1}$ [/mm] also genau wie $s$ und weil die beiden Räume den [mm] $\IR^2$ [/mm] aufspannen, ist sie also gleich $s$, es folgt daher

$s = [mm] \sigma^{-1} \circ [/mm] s' [mm] \circ \sigma$ [/mm] und die beiden Spiegelungen sind konjugiert.

Alles klar? :-)

Liebe Grüße,
Lars

Bezug
                                
Bezug
Spiegelungen konjugiert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:14 Sa 22.03.2008
Autor: Rutzel

Vielen Dank!

Nach einiger "Bedenkzeit" habe ich Deinen Beweis nun verstanden.

Gruß,
Rutzel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]