Spiegelungsmatrizen,Drehung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:54 Sa 01.11.2014 | Autor: | sissile |
Aufgabe | Sei [mm] 0\not= [/mm] v [mm] \in\IR^2 [/mm] gegeben. Betrachten Sie die Matrix
[mm] S_v:= [/mm] 1- [mm] \frac{2}{||v||^2}\pmat{ v_1^2 & v_1 v_2 \\ v_1v_2 & v_2^2}
[/mm]
1) Welche geometrische Wirkung hat die lineare Abbildung, die von [mm] S_v [/mm] definiert wird?
2) Seien [mm] S_v, S_w [/mm] zwei solche Spiegelmatrizen. Seigen die dass [mm] D=S_v S_w [/mm] eine Drehung beschreibt. Um welchen Winken wird gedreht? |
Hallo zusammen,
Punkt 1) hab ich erledigt.
[mm] S_v (P)=S_v(\vektor{x \\ y}) [/mm] = [mm] \pmat{ (1-\frac{2}{||v||^2} v_1^2)x -(\frac{2}{||v||^2} v_1 v_2) y \\ (-\frac{2}{||v||^2}v_1v_2)x+(1-\frac{2}{||v||^2}v_2^2)y} [/mm] = [mm] \vektor{x \\ y} [/mm] - [mm] \frac{2}{||v||^2} \vektor{v_1^2x+v_1v_2y\\ v_1v_2x+v_2^2y} =\vektor{x \\ y} [/mm] - [mm] \frac{2}{||v||^2} \vektor{v_1(v_1x+v_2y)\\ v_2(v_1x+v_2y}=\vektor{x \\ y} [/mm] - [mm] \frac{2(v_1x+v_2y)}{||v||^2} \vektor{v_1 \\ v_2} [/mm] = P - [mm] \frac{2}{||v||^2}v
[/mm]
[mm] \gdw P-S_v [/mm] P = [mm] \frac{2}{||v||^2}v
[/mm]
d.h. [mm] P-S_v [/mm] P = [mm] \lambda [/mm] v mit [mm] \lambda=\frac{2}{||v||^2}
[/mm]
-> kollineare Vektoren
Der Abstand zwischen P und S_vP:
[mm] |\overrightarrow{S_vP P}|=|P-S_vP|=\lambda [/mm] v|= [mm] |\frac{2}{||v||^2}| [/mm] ||v||= [mm] \frac{2||}{||v||}
[/mm]
Ein Punkt der Spiegelgeraden ist:
[mm] \vektor{s_1 \\ s_2} [/mm] = P - [mm] \frac{}{||v||} \frac{v}{||v||}
[/mm]
Da ich da ja nur den halben Abstand möchte und den Richtungsvektor v muss ich normieren.
Geradenaufstellung der Spiegelgeraden in Normalform:
[mm] v_1 [/mm] x [mm] +v_2 [/mm] y=<v,P - [mm] \frac{}{||v||} \frac{v}{||v||}>
[/mm]
[mm] \gdw v_1 [/mm] x [mm] +v_2 y=-\frac{}{||v||^2} [/mm] <v,v>
[mm] \gdw v_1 [/mm] x [mm] +v_2 [/mm] y=<v,P>-<v,P>
[mm] \gdw v_1 [/mm] x + [mm] v_2 [/mm] y=0
Es wird also an der Geraden,die normal zu v ist und durch den Ursprung geht gespiegelt.
2)
[mm] S_v S_w [/mm] = [mm] \pmat{ (1-\frac{2}{||v||^2} v_1^2)*(1-\frac{2}{||w||^2}w_1^2)+(-\frac{2}{||v||^2} v_1v_2)*(-\frac{2}{||w||^2} w_1w_2)&(1-\frac{2}{||v||^2}v_1^2)*(-\frac{2}{||w||^2} w_1w_2)+(-\frac{2}{||v||^2}*v_1v_2)*(1-\frac{2}{||w||^2}w_2^2) \\ (-\frac{2}{||v||^2}v_1v_2)*(1-\frac{2}{||w||^2}w_1^2)+(1-\frac{2}{||v||^2} v_2^2)*(-\frac{2}{||w||^2}w_1w_2)&(-\frac{2}{||v||^2}v_1v_2)*(-\frac{2}{||w||^2}w_1w_2)+(1-\frac{2}{||v||^2}v_2^2)*(1-\frac{2}{||w||^2}w_2^2)}
[/mm]
Wie soll ich da irgendwie auf eine Drehung kommen??
Eine Drehung in [mm] \IR^2 [/mm] hat die Matrix:
[mm] M_{\phi} [/mm] = [mm] \pmat{ cos(\phi) & - sin(\phi) \\ sin(\phi) & cos(\phi) }
[/mm]
Ich würde mich sehr über Hilfe freuen!
LG,
sissi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:47 So 02.11.2014 | Autor: | leduart |
Hallo
Wenn du überall die Einheitsvektoren in v Richtung, bzw in w Richtung einsetzt, sind das die Vektoren [mm] \bruch{v}{{v}}=v_e=\vektor{xcos(\alpha)\\ sin(\alpha)}, w_e [/mm] dasselbe mit [mm] \beta, [/mm]
alpha, [mm] \beta [/mm] = Winkel zur x-Achse.
damit könntest dir schon am Anfang viel Schreibarbeit sparen.
setz das am Ende ein, oder deine schon vereinfachte Formel für Spiegelungen an einer Geraden und denk auch [mm] =cos(\phi)
[/mm]
Gruß leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 10:48 Di 04.11.2014 | Autor: | sissile |
Hallo leduart,
danke für den Tipp!!
[mm] v_e=\vektor{cos(\alpha)\\ sin(\alpha)},
[/mm]
[mm] w_e=\vektor{cos(\beta)\\ sin(\beta)},
[/mm]
Dann ist [mm] S_{v_e} =\pmat{ -cos(2\alpha) & -sin(2\alpha) \\ -sin(2\alpha) & cos(2\alpha) }
[/mm]
[mm] S_{v_e} S_{w_e} =\pmat{cos(2\alpha)cos(2\beta)+sin(2\alpha)sin(2\beta)&cos(2\alpha)sin(2\beta)-sin(2\alpha)cos(2\beta)\\sin(2\alpha)cos(2\beta)-cos(2\alpha)sin(2\beta)&sin(2\alpha)sin(2\beta)+cos(2\alpha)cos(2\beta)}=\pmat{cos(2\alpha-2\beta)&sin(2\alpha-2\beta)\\-sin(2\alpha-2\beta)&cos(2\alpha-2\beta)}
[/mm]
Also um den Winkel [mm] 2(\alpha-\beta) [/mm] wird gedreht.
Korrekt?
LG,
sissi
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:39 Di 04.11.2014 | Autor: | leduart |
Hallo
korrekt, du kannst es ja an einer Zeichnung leicht überprüfen.
Gruß leduart
|
|
|
|