www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstiges / DiversesSpieltheorie, Nash-GG
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Sonstiges / Diverses" - Spieltheorie, Nash-GG
Spieltheorie, Nash-GG < Sonstiges / Diverses < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges / Diverses"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spieltheorie, Nash-GG: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:08 Sa 28.03.2009
Autor: Brazzo

Aufgabe
Es geht darum, das Nash-Gleichgewicht des unten angegebenen Spiels (Gefangenendilemma) in gemischten Strategien zu bestimmen.

[mm] \pmat{ & Schweigen & Aussagen \\ Schweigen & 3,3 & 0,4 \\ Aussagen & 4,0 &1,1 } [/mm]

(die Zahl links vom Komma gibt dabei die Auszahlungen von Spieler 1 und rechts die von Spieler 2 an)

Hallo,

bin bei der Klausurvorbereitung über obiges eigentlich recht harmlos anmutendes Beispiel gestolpert...

Bekannt ist ein Satz, der besagt, dass jedes endliche Spiel in Normalform mindestens ein Nash-Gleichgewicht in gemischten Strategien besitzt.

Weiterhin ist bekannt, dass in einem Nash-GG in gemischten Strategien beide Spieler indifferent zwischen ihren reinen Strategien sind, diese also identische erwartete Auszahlungen haben, wenn die Strategie des jeweils anderen gegeben ist.

Sind also (x,1-x) und (y,1-y) die jeweiligen (zu bestimmenden) gemischten Strategien mit [mm] x,y\in[0,1] [/mm] dann müsste gelten:

(1) 3x=4x+(1-x)
(2) 3y=4y+(1-y)

Es gibt aber keine derartigen x,y.

Daraus würde ich jetzt schließen, dass es in diesem Fall kein Nash-GG gibt, aber wie ist das mit obigen Sätzen in Einklang zu bringen? Wurden irgendwelche Voraussetzungen für die Gültigkeit unterschlagen oder übersehe ich etwas wichtiges? Gibt es denn noch eine andere Möglichkeit ein Nash-GG zu bestimmen?

Hoffe, es findet sich hier jemand, der sich etwas damit auskennt.

Danke im Voraus

        
Bezug
Spieltheorie, Nash-GG: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Di 07.04.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges / Diverses"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]